SEIBERG-WITTEN THEORY ON THREE MANIFOLDS

Celso Melchiades Doria
cmdoria@mtm.ufsc.br

Sumário

1 Spin ${ }^{c}$ Structures 3
1.1 Clifford Algebras 4
1.1.1 Classification 7
1.1.2 Representations of Clifford Algebras 8
1.1.3 $\quad\left(\mathbb{C} l_{4}^{0}\right)^{+}$ 10
1.2 Spin Group 10
1.3 Spin Structure 12
1.3.1 Classification of Spin Bundles 14
1.3.2 Geometric Meaning of a Spin Structure 15
1.3.3 Interpretation of w_{2} as an Obstruction 18
1.3.4 Spin Structure on a Handlebody 20
1.4 Almost Complex Structures 23
1.4.1 Complex Structures on $\mathbb{R}^{2 n}$ 23
1.5 Spin ${ }^{c}$ Structures 26
1.5.1 Local Description of a Fundamental Complex Spinor Bundle 29
1.6 Cobordant Spin ${ }^{\text {c }}$-Structures 30
2 SW-Equations 33
2.1 Quadratic form 33
2.2 The Quadratic Forms $\sigma_{3}: \mathbb{C}^{2} \rightarrow \Lambda^{1} \mathbb{R}^{3}$ and $\sigma_{4}: \mathbb{C}^{2} \rightarrow \Lambda_{+}^{2} \mathbb{R}^{4}$ 35
2.3 $S W$-Equations on a 3-Manifold Y 39
2.3.1 \quad Slice for $\mathcal{B}_{\mathfrak{s}(\alpha)}=\mathcal{C}_{\mathfrak{s}(\alpha)} / \mathcal{G}_{\mathfrak{s}(\alpha)}$ 45
2.3.2 Homotopy Aspects 47
2.3.3 The Moduli Space of $\mathcal{S} \mathcal{W}_{\mathfrak{s}(\alpha)}$-Monopoles 47
2.3.4 Perturbed $\mathcal{S W}$-Equations 52
2.3.5 Spectral Flow of the Dirac Operator 56
2.3.6 $\quad \mathcal{M}_{\mathfrak{s}(\alpha)}$ is compact for all $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{c}(X)$ 57
2.3.7 $\quad \mathcal{M}_{\mathfrak{s}(\alpha)}$ is orientable for all $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{c}(X)$ 58
2.3.8 Seiberg-Witten Invariants of Y^{3} 59
2.4 Metric Invariance of $\mathcal{S W}$-Invariant 60
2.4.1 Case $b_{1}(Y)>1$ 60
2.4.2 Case $b_{1}(Y)=1$ 61
2.4.3 Case $b_{1}(Y)=0$ 62

Capítulo 1

Spin c Structures

Let V be a finite dimensional \mathbb{K}-vector space; in our context $\mathbb{K}=\mathbb{R}, K=\mathbb{C}$ or $\mathbb{K}=\mathbb{H}$.

Definition 1.1. A symmetric bilinear form on V is a function $B: V \rightarrow \mathbb{K}$ such that,

1. $B\left(k_{1} u_{1}+k_{2} u_{2}, v\right)=k_{1} B\left(u_{1}, v\right)+k_{2} B\left(u_{2}, v\right)$, for all $u_{1}, u_{2} \in V$ and $k_{1}, k_{2} \in \mathbb{K}$.
2. $B(u, v)=B(v, u)$, for all $u, v \in V$.

The quadratic form associated to a symmetric bilinear form $B: V \times V \rightarrow \mathbb{K}$ is defined as $q_{B}(u)=B(u, u), q_{B}: \mathbb{K} \rightarrow \mathbb{R}$.

$$
\begin{equation*}
B(u, v)=\frac{1}{2}\left[q_{B}(u+v)-q_{B}(u)-q_{B}(v)\right] \tag{1.1}
\end{equation*}
$$

Thus, let's focus exclusively on symmetric bilinear forms. In this case, if we fix a basis $\beta=\left\{e_{1}, \ldots, e_{n}\right\}\left(\operatorname{dim}_{\mathbb{K}}(V)=n\right)$, then the symmetric matrix M representing B is $M_{i j}=\left(B\left(e_{i}, e_{j}\right)\right)$ and it is diagonalizable over \mathbb{K}. Let

$$
V^{+}=\oplus_{\lambda} V_{\lambda>0}, \quad V^{-}=\oplus_{\lambda} V_{\lambda<0}
$$

where $V_{\lambda}=\{u \in V \mid M(u)=\lambda u\}$ is the eigenspace associated to the eigenvector λ.
By Sylvester's Theorem, a quadratic form on \mathbb{R}^{n} is determined, up to similarity, by the pair of natural numbers $\left(r k_{q}, \sigma_{q}\right)$, where $r k_{q}=\operatorname{dim}\left(V^{+}\right)+\operatorname{dim}\left(V^{-}\right)$is its rank and $\sigma_{q}=\operatorname{dim}\left(V^{+}\right)-\operatorname{dim}\left(V^{-}\right)$is its signature. The quadratic form is non-degenerated whenever $V_{0}=\{0\}$, otherwise it is degenerated. From now on, we will consider that all the quadratic forms are non-degenerated. Thus, Sylvester Theorem claims that if q has $r k_{q}=r, \sigma_{q}=s$ and $r+s=n$, then it is equivalent to the quadratic form

$$
\begin{equation*}
q_{r, s}\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)=\sum_{i=1}^{r} x_{i}^{2}-\sum_{j=1}^{s} y_{j}^{2} \tag{1.2}
\end{equation*}
$$

The classification above justifies the following notation: on \mathbb{R}^{n}, where $n=r+s$, consider $<., .>_{r, s}: V \times V \rightarrow \mathbb{R}$ the non-degenerated bilinear form associated to the quadratic form $q_{r, s}$ in 1.2.

1.1 Clifford Algebras

Definition 1.2. Let V be a \mathbb{K}-vector space and $q: V \rightarrow \mathbb{K}$ be a nondegenerated quadratic form. The Clifford Algebra $C l(V, q)$ associated to the pair (V, q) is the algebra generated by the relation

$$
\begin{equation*}
u \cdot v+v \cdot u=-2 B(u, v) \cdot 1, \quad 1 \in \mathbb{K} . \tag{1.1}
\end{equation*}
$$

where B is the bilinear form defined by the identity 1.1.
Example 1.1. .

1. Let $\mathbb{K}=\mathbb{R}, V=\mathbb{R}^{n}$ and $B(u, v)=<u, v>$ be euclidean inner product on \mathbb{R}^{n}. Consider $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis with respect to the inner product. The identity 1.1 induces the following relations in $C l_{n}=C l\left(\mathbb{R}^{n},<,>\right)$:

$$
\begin{equation*}
e_{i} \cdot e_{j}+e_{j} \cdot e_{i}=-2 \delta_{i j} . \tag{1.2}
\end{equation*}
$$

From the relation 1.2, the basis $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ generates in $C l_{n}$ the elements $e_{I}=e_{i_{1}} \ldots e_{i_{k}}$ of length $|I|=k$, where $1 \leq k \leq n$ and $I=\left(i_{1}, \ldots, i_{k}\right)$. For $k \in\{1, \ldots, n\}$, there are $\binom{n}{k}$ linearly independents elements e_{I} such that $|I|=k$. Thus,

$$
V_{k}=\left\{\sum_{i=1}^{a} f_{I} e_{I} \mid f_{I} \in \mathbb{R} \text { and },|I|=k\right\}
$$

is a vector subspace of $C l_{n}$ with dimension $\binom{n}{k}$. We note that the vector space structure on $C l_{n}=\mathbb{R} \oplus V_{1} \oplus V_{2} \cdots \oplus V_{n}$ is isomorphic to the vector space structure on the exterior algebra $\Lambda^{*} \mathbb{R}^{n}$, hence its dimension is 2^{n}.
2. Let $\mathbb{K}=\mathbb{R}, V=\mathbb{R}^{n}$ and $B(u, v)=<., .>_{r, s}$. If $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ is orthonormal with respect to $<., .>_{r, s}$, then $C l_{r, s}$ is generated as an algebra by the relations

$$
\begin{align*}
& e_{i} \cdot e_{j}+e_{j} \cdot e_{i}=-2 \delta_{i j}, \quad \text { if } i \leq r, \tag{1.3}\\
& e_{i} \cdot e_{j}+e_{j} \cdot e_{i}=2 \delta_{i j}, \quad \text { if } i \geq r+1 . \tag{1.4}
\end{align*}
$$

autor: Celso M Doria

The automorphism $\alpha: V \rightarrow V, \alpha(u)=-u$, induces the automorphism

$$
\alpha: C l(V, q) \rightarrow C l(V, q), \quad \alpha\left(\sum_{I} \phi_{I} e_{I}\right)=\sum_{I} \phi_{I} \alpha\left(e_{I}\right),
$$

where if $e_{I}=e_{i_{1}} \ldots e_{i_{k}}$, then $\alpha\left(e_{I}\right)=\alpha\left(e_{i_{1}}\right) \ldots \alpha\left(e_{i_{k}}\right)$. Furthermore, the relation $\alpha^{2}=I$ induces the decomposition

$$
C l(V, B)=C l^{0} \oplus C l^{1}
$$

where $C l^{0}=\{\phi \in C l(V, q) ; \alpha(\phi)=\phi\}$ and $C l^{1}=\{\phi \in C l(V, q) ; \alpha(\phi)=-\phi\}$. The subspace $C l^{0}$ is an subalgebra generated by $<1, e_{I}:|I|$ even $>$ and $C l^{1}$ is a vector space generated by $<e_{I}:|I|$ odd $>$.

Proposition 1.1. For all r, s, there is an algebra isomorphism $C l_{r, s} \simeq C l_{r+1, s}^{0}$. In particular, $C l_{n} \simeq C l_{n+1}^{0}$ for all n.

Demonstração. Choose a $q_{r, s}$-orthonormal basis $\beta=\left\{e_{1}, \ldots, e_{r+s+1}\right\}$ of \mathbb{R}^{r+s+1} so that $q_{r, s}\left(e_{i}\right)=1$ for $1 \leq i \leq r+1$ and $q_{r, s}\left(e_{i}\right)=-1$ for $r+1<i \leq r+s+1$ and consider the map $f: \mathbb{R}^{r+s} \rightarrow C l_{r+1, s}^{0}$ defined by setting $f\left(e_{i}\right)=e_{i} e_{r+1}$ on the basis $\beta_{r, s}=\left\{e_{1}, \ldots, e_{r}, e_{r+2}, \ldots, e_{r+s+1}\right\}$ and extend it linearly to \mathbb{R}^{r+s}. For $u=\sum_{i \neq r+1} u_{i} e_{i}$, we have that

$$
f(u)^{2}=\sum_{i, j} u^{i} u^{j} e_{i} e_{r+1} e_{j} e_{r+1}=\sum_{i \neq r+1} u_{i} u_{j} e_{i} e_{j}=u . u=-q(u) .1
$$

It follows from the universal property that f extends to an algebra momomorphism, which restriction to the subalgebra $C l_{r+1, s}^{0}$ is surjective.

Definition 1.3. Fixed a orthonormal basis $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ of ($\mathbb{R}^{n},<., .>_{r, s}$), the volume form of $C l_{r, s}$ is the element $w=e_{1} \ldots e_{n}$.

Proposition 1.2. Let $w=e_{1} \ldots e_{n}$ be the volume form of $C l_{r, s}$, then;

1. w is well defined (it independs on the choosen basis).
2. $w^{2}=(-1)^{\frac{n(n+1)}{2}+s}$.
3. For all $u \in V, u w=(-1)^{n-1} w u$. In particular, if n is odd, then w is central in $C l_{r, s}$. If n is even, then $\phi w=w \alpha(\phi)$, for all $\phi \in C l_{r, s}$.

Demonstração. .

1. Let $\beta^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}$ be another basis and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the orientation preserving orthogonal automorphism of \mathbb{R}^{n} taking the representation of a vector in β to the representation in β^{\prime},

$$
v_{i}=T\left(e_{i}\right)=\sum_{l=1}^{n} t_{l i} e_{l}, \quad(T)_{k l}=t_{l k}
$$

Then

$$
w^{\beta^{\prime}}=v_{1} \ldots v_{n}=T\left(e_{1}\right) \ldots T\left(e_{n}\right)=\operatorname{det}(T) \cdot e_{1} \ldots e_{n}=w .
$$

2. Let $w=e_{1} \ldots e_{n}$ and $u=\sum_{i} v_{i} e_{i}$, so

$$
\begin{aligned}
u . w & =\sum v_{i} e_{i} e_{1} \ldots e_{i} \ldots e_{n}=\sum_{i} v_{i}(-1)^{i-1} e_{1} \ldots e_{i} e_{i} \ldots e_{n}= \\
& =(-1)^{[(i-1)+(n-i)]} v_{i} e_{1} \ldots e_{i} \ldots e_{n} \cdot e_{i}=(-1)^{n-1} w . u .
\end{aligned}
$$

Proposition 1.3. Let either $n=4 k$ or $n=4 k+3$. In this cases, $w^{2}=1$ in $C l_{n}$ generates the decomposition $C l_{n}=C l^{+} \oplus C l^{-}$, where $C l^{ \pm}$is the eigenspace associated to the eigenvalue ± 1 of w.

Demonstração. Let $\pi^{ \pm}=\frac{1}{2}(1 \pm w)$, so $\pi^{+}+\pi^{-}=1$ and $\left(\pi^{+}\right)^{2}=\pi^{+},\left(\pi^{-}\right)^{2}=\pi^{-}$and $\pi^{+} \pi^{-}=\pi^{-} \pi^{+}=0$. Now, define $C l^{ \pm}=\pi^{ \pm}\left(C l_{n}\right)$.

Corollary 1.1. Consider $n=4 k$ and let V be a $C l_{n}$-module. Then there is a decomposition

$$
V=V^{+} \oplus V^{-}
$$

into the +1 and -1 eigenspaces for the multiplication by $w\left(V^{ \pm}=\pi^{ \pm}(V)\right)$. Also, for any $v \in V$ with $q(v) \neq 0$, the module multiplication by v gives the isomorphisms

$$
v: V^{+} \rightarrow V^{-}, \quad v: V^{-} \rightarrow V^{+} .
$$

Demonstração. The last claim concerning the vector $v \in V$ is obtained from the fact that n being even then $v w=-w v$, and so

$$
v \cdot \pi^{ \pm}=\frac{1}{2} v \cdot(1 \pm w)=\frac{1}{2}(1 \mp w) \cdot v=\pi^{\mp} \cdot v .
$$

Definition 1.4. Let V be a real vector space endowed with a non-degenerated quadratic form $q: V \rightarrow \mathbb{R}$. The complexification of $C l(V, q)$ is

$$
\mathbb{C l}(V, q)=C l(V, q) \otimes \mathbb{C}
$$

$\underline{\text { notation: }} \mathbb{C l}_{r, s}=\mathbb{C} l_{n}=C l_{n} \otimes \mathbb{C}$.

1.1.1 Classification

Next it is described the main steps to classify the Cliford Algebra an to show that they are all algebras of matrixes.

Proposition 1.4.

$$
\begin{align*}
& C l_{1,0}=\mathbb{C}, \quad C l_{0,1}=\mathbb{R} \oplus \mathbb{R}, \tag{1.5}\\
& C l_{2,0}=\mathbb{H}, \quad C l_{0,2}=M(2, \mathbb{R}), \tag{1.6}\\
& C l_{1,1}=M(2, \mathbb{R}) . \tag{1.7}
\end{align*}
$$

Proposition 1.5. For all n, r e s, there are isomorphisms

$$
\begin{align*}
& C l_{0, n+2} \simeq C l_{n, 0} \otimes C l_{0,2} \tag{1.8}\\
& C l_{n+2,0} \simeq C l_{0, n} \otimes C l_{2,0} \tag{1.9}\\
& C l_{r+1, s+1} \simeq C l_{r, s} \otimes C l_{1,1} . \tag{1.10}
\end{align*}
$$

Theorem 1.1. For all n, there are periodicity isomorphisms

$$
\begin{align*}
& C l_{n+8,0} \simeq C l_{n, 0} \otimes C l_{8,0} \tag{1.11}\\
& C l_{0, n+8} \simeq C l_{0, n} \otimes C l_{0,8} \tag{1.12}\\
& \mathbb{C} l_{n+2} \simeq \mathbb{C} l_{n} \otimes_{\mathbb{C}} \mathbb{C} l_{2}, \tag{1.13}
\end{align*}
$$

where $C l_{8,0}=C l_{0,8}=M(16, \mathbb{R}) e \mathbb{C l}_{2}=M(2, \mathbb{C})$. Therefore,

$$
\begin{align*}
& \mathbb{C} l_{2 k-1}=M\left(2^{k-1}, \mathbb{C}\right) \oplus M\left(2^{k-1}, \mathbb{C}\right) \tag{1.14}\\
& \mathbb{C} l_{2 k}=M\left(2^{k}, \mathbb{C}\right) \tag{1.15}\\
& \mathbb{C} l_{2 k+1}=M\left(2^{k}, \mathbb{C}\right) \oplus M\left(2^{k}, \mathbb{C}\right) \tag{1.16}
\end{align*}
$$

Example 1.2. Let $V=\mathbb{R}^{n}$ and $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ be a orthonormal basis. Using β, we can describe the inclusion $\iota: \mathbb{R}^{n} \hookrightarrow C l_{n}$ and the generators set of $C l_{n}$.

1. $C l_{1} \simeq \mathbb{C}$

In this case $V=\mathbb{R}$, let $\beta=\left\{e_{1}=1\right\}$ be the basis. Since $e_{1}^{2}=-1$, we take $\iota: V \rightarrow \mathbb{C}$ by setting $\iota\left(e_{1}\right)=i$.
2. $C l_{2} \simeq \mathbb{H}$ In this case $V=\mathbb{R}^{2}$, let $\beta=\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$ be canonical orthonormal basis. The quaternions \mathbb{H} can be identified with \mathbb{C}^{2} using the fact that $i=j k$, as shown next;

$$
q_{0}+q_{1} i+q_{2} j+q_{3} k=q_{0}+q_{1} j k+q_{2} j+q_{3} k=\left(q_{0}+q_{3} k\right)+j\left(q_{2}+k q_{3}\right) .
$$

As a algebra, consider \mathbb{H} generated by $\{j, k\}$ and let $\iota\left(e_{1}\right)=j$ and $\iota\left(e_{2}\right)=k$. If we consider the representation $\sigma: \mathbb{H} \rightarrow M(2, \mathbb{C})$, given by

$$
\sigma(a+b j)=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right),
$$

we assign

$$
\sigma \eta\left(e_{1}\right)=\left(\begin{array}{cc}
0 & 1 \tag{1.17}\\
-1 & 0
\end{array}\right), \quad \sigma \eta\left(e_{2}\right)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

3. $C l_{3} \simeq \mathbb{H} \oplus \mathbb{H}$
$V=\mathbb{R}^{3}$ and $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ the canonical basis
4. $C l_{4}$

1.1.2 Representations of Clifford Algebras

Let W be a $C l_{n}$-module and $\rho: C L_{n} \rightarrow \operatorname{Hom}(W, W)$ be a linear representation. The volume form plays important role in the classification of irredutible $C l_{n}$-modules because $\rho(w)^{2}=I$ and w is central whenever n is odd.

Proposition 1.6. If $n=4 m+3$, then the eigenspaces $C l_{n}^{ \pm}$of the volume form w are inequivalent and irredutible representations of $C l_{n}$.

Demonstração. In this case $w^{2}=1$ and w is central. Of course, $C l_{n}^{ \pm}$are $C l_{n}$-modules. The decomposition $C l_{n}=C l_{n}^{+} \oplus C l_{n}^{-}$together with the fact that each component $C l_{n}^{ \pm}$is $C l_{n}$-invariant means that they are irredutible representations of $C l_{n}$, say $\rho_{ \pm}$. To see that they are inequivalent, we observe that $\rho_{ \pm}(w)= \pm I$ and that there is no isomorphism $F: C l_{n}^{+} \rightarrow C l_{n}^{-}$such that $\rho_{+}(w)=F^{-1} \circ \rho_{-}(w) \circ F$.

Proposition 1.7. Let $n=4 m$ and $\rho: C l_{n} \rightarrow \operatorname{Hom}(W, W)$ be a irredutible representation. Then, there is the decomposition $W=W^{+} \oplus W^{-}$, where each space $W^{ \pm}$is $C l_{n}^{0}$ invariant, and each one corresponds to a irredutible representation of $C l_{n-1} \simeq C l_{n}^{0}$.

Demonstração. It is enough to observe that $\phi \cdot w=w \cdot \phi$, for all $\phi \in C l_{4 m}$ and $w \in C l_{n}^{0}$. However, $u \cdot w=-w . u$ for all $u \in V$, and so, $u \cdot \pi^{ \pm}=\pi^{\mp} u$.

Corollary 1.2. Consider the complex Clifford Algebras $\mathbb{C} l_{n}$ and $w_{\mathbb{C}}=i^{\left[\frac{n+1}{2}\right]} w$ the complex volume form;
autor: Celso M Doria

1. if $n=2 k+1$, then there are two irredutible and inequivalent representations of $\mathbb{C} l_{2 k+1}$.
2. if $n=2 k$, then there is only one irredutible representation $W \simeq \mathbb{C}^{4}$ admitting a decomposition $W=W^{+} \oplus W^{-}$, where $W^{ \pm}$are the irredutible representations of $\mathbb{C} l_{2 k-1} \simeq \mathbb{C} l_{2 k}^{0}$.

Demonstração. First we observe that $w_{\mathbb{C}}=1$, since

$$
w_{\mathbb{C}}^{2}=i^{2 \cdot\left[\frac{n+1}{2}\right]} \cdot e_{1} \ldots e_{n} \cdot e_{1} \ldots e_{n}=(-1)^{\frac{n(n-1)}{2}} \cdot(-1)^{\frac{n(n-1)}{2}}=1
$$

Thus, $w_{\mathbb{C}}$ has eigenvalues ± 1 and the corresponding eigenspaces $\mathbb{C} l_{n}^{ \pm}$induce the decomposition $\mathbb{C} l_{n}=\mathbb{C} l_{n}^{+} \oplus \mathbb{C} l_{n}^{-}$.

1. If n is odd, $w_{\mathbb{C}}$ is central, then $\mathbb{C} l_{n}^{ \pm}$are invariant as $\mathbb{C} l_{n}$-modules and inequivalent as representations.
2. if n is even, then any $v \in V$ induces an isomorphism $v: \mathbb{C} l_{n}^{ \pm} \rightarrow \mathbb{C} l_{n}^{\mp}$. Besides, each $\mathbb{C} l_{n}^{ \pm}$is $\mathbb{C} l_{n}^{0} \simeq \mathbb{C} l_{n-1}$ invariant.
remark: In the Corollary above, the dimension of the irredutible representation spaces W can be computed as follows: (hint: $\left.\operatorname{dim}(M(n, \mathbb{R}))=n^{2}\right)$
3. $n=2 k-1$;

Since $\operatorname{dim}\left(\mathbb{C} l_{2 k-1}\right)=2^{2 k-1}$, it follows that $\operatorname{dim}\left(\mathbb{C} l_{2 k-1}^{ \pm}\right)=2^{2 k-2}=\left(2^{k-1}\right)^{2}$. Hence, $\operatorname{dim}(W)=2^{k-1}$.
2. $n=2 k$;

Since in this case $\mathbb{C} l_{2 k}$ is irredutible as a $\mathbb{C} l_{2 k}$-module and $\operatorname{dim}\left(\mathbb{C} l_{2 k}\right)=\left(2^{k}\right)^{2}$, it follows that $\operatorname{dim}(W)=2^{k}$.
Let's compute the volume form $w_{\mathbb{C}}$ in $\mathbb{C} l_{2 k-1}=M\left(2^{k-1}, \mathbb{C}\right) \oplus M\left(2^{k-1}, \mathbb{C}\right)$ and $\mathbb{C} l_{2 k} \simeq$ $M(2 k, \mathbb{C})$ are performed;
Proposition 1.8. Let $w_{\mathbb{C}} \in \mathbb{C} l_{n}$ be the volume form; so,

$$
w_{\mathbb{C}} \rightsquigarrow\left(\begin{array}{cc}
I & 0 \tag{1.18}\\
0 & -I
\end{array}\right) \quad \text { or } \quad w_{\mathbb{C}} \rightsquigarrow\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)
$$

Demonstração. From the decompositions $\mathbb{C} l_{n}=\mathbb{C}^{+} \oplus \mathbb{C}^{-}$, we have $w_{\mathbb{C}}=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$, hence $A^{2}=B^{2}=I$, and $A= \pm I$ and $B= \pm I$. Since $1 \rightarrow I$ and $-1 \rightarrow-I$, the only possibilities are 1.18. In the first case, we compute

$$
\pi^{+}=\frac{1+w_{\mathbb{C}}}{2}=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right), \quad \text { and } \quad \pi^{-}=\frac{1-w_{\mathbb{C}}}{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right)
$$

1.1.3 $\left(\mathbb{C} l_{4}^{0}\right)^{+}$

As vector spaces, we have the isomorphism $\mathbb{C l}_{4} \simeq \Lambda^{*}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}$. One of the SeibergWitten equations requires a relationship among the vector spaces $\left(\mathbb{C} l_{4}^{0}\right)^{+}$and $\Lambda_{+}^{2}\left(\mathbb{R}^{4}\right)$;
Proposition 1.9. Let $\left(\mathbb{C} l_{4}^{0}\right)^{+}=\mathbb{C} l_{4}^{0} \cap \mathbb{C} l_{4}^{+}$, so

$$
\begin{equation*}
\left(\mathbb{C} l_{4}^{0}\right)^{+} \simeq\left\{\left\langle\frac{1+w_{\mathbb{C}}}{2}\right\rangle \oplus \Lambda_{+}^{2}\left(\mathbb{R}^{4}\right)\right\} \otimes \mathbb{C} \tag{1.19}
\end{equation*}
$$

Demonstração. Its is straight forward that

$$
\mathbb{C} l^{0} \simeq\left(\Lambda^{0} \oplus \Lambda^{2} \oplus \Lambda^{4}\right) \otimes \mathbb{C} .
$$

The subspaces $\Lambda^{2} \mathbb{C}$ and $\left(\Lambda^{0} \oplus \Lambda^{4}\right) \otimes \mathbb{C}$ are invariant by $w_{\mathbb{C}}$. Let $\beta=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be a orthonormal basis of \mathbb{R}^{4}, so $w_{\mathbb{C}}=-e_{1} e_{2} e_{3} e_{4}$ and

$$
w\left(e_{1} e_{2}\right)=e_{3} e_{4}, \quad w\left(e_{1} e_{3}\right)=-e_{2} e_{4}, \quad w\left(e_{1} e_{4}\right)=e_{2} e_{3} .
$$

The multiplication by $w_{\mathbb{C}}$ on $\mathbb{C l}_{n}$ is similar to the action of the Hodge $*$-operator on $\Lambda^{*}\left(\mathbb{R}^{n}\right)$, in the sense that the diagram below commutes;

So, the elements

$$
\frac{e_{1} e_{2}+e_{3} e_{4}}{2}, \frac{e_{1} e_{3}-e_{2} e_{4}}{2}, \frac{e_{1} e_{4}+e_{2} e_{3}}{2}
$$

form a basis of Λ_{+}^{2}. So, a generator set of $\left(\mathbb{C} l_{4}^{0}\right)^{+}$is given by

$$
\left\langle\frac{1+w_{\mathbb{C}}}{2}\right\rangle \oplus\left\langle\frac{d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}}{2}, \frac{d x^{1} \wedge d x^{3}-d x^{2} \wedge d x^{4}}{2}, \frac{d x^{1} \wedge d x^{4}+d x^{2} \wedge d x^{3}}{2}\right\rangle
$$

1.2 Spin Group

The multiplicative group of units in $C l(V, q)$ is the set

$$
C l^{\times}(V, q)=\{\phi \in C l(V, q) \mid \phi \quad \text { invertible }\}
$$

This group contains all elements $v \in V$ with $q(v) \neq 0$, since $v^{-1}=-\frac{v}{q(v)}$. It is a Lie group of dimension $2^{\operatorname{dim}(V)}$. The adjoint representation $A d: C l^{\times}(V, q) \rightarrow \operatorname{Aut}(C l(V, q))$ is given by $A d_{\phi}(x)=\phi x \phi^{-1}$. For $v \in V$,
autor: Celso M Doria

$$
\begin{equation*}
-A d_{v}(w)=w-2 \frac{q(v, w)}{q(v)} v . \tag{1.1}
\end{equation*}
$$

The right hand side of expression 1.1 is a q-reflection over the q-orthogonal plane to v, hence it preserves q. In order to obtain a q-reflection, or to get rid of the minus sign on the left hand side, we introduce the twisted adjoint representation $\overline{A d}: C l^{\times}(V, q) \rightarrow$ $\operatorname{Aut}(C l(V, q))$,

$$
\begin{equation*}
\overline{A d}_{\phi}(y)=\alpha(\phi) y \phi^{-1} \tag{1.2}
\end{equation*}
$$

Note the following: (1) $\overline{A d}_{\phi}=A d_{\phi}$ iff ϕ is even and (2) $\overline{A d}_{\phi}=-A d_{\phi}$ iff ϕ is odd. It follows that for all $v \in V$

$$
\begin{equation*}
\overline{A d}_{v}(w)=w-2 \frac{q(v, w)}{q(v)} v . \tag{1.3}
\end{equation*}
$$

Thus, $\overline{A d}_{v}$ is a q-reflection. Define $P(V, q)$ to be the subgroup of $C l^{\times}(V, q)$ generated by $v \in V$ with $q(v) \neq 0$. In this way, we have got a representation $P(V, q) \rightarrow O(V, q)$.

Definition 1.5. The Pin group $\operatorname{Pin}(V, q)$ of (V, q) is the subgroup of $P(V, q)$ generated by the elements $v \in V$ with $q(v)= \pm 1$. The associated Spin group of (V, q) is defined by

$$
\operatorname{Spin}(V, q)=\operatorname{Pin}(V, q) \cap C l^{0}(V, q) .
$$

Now, letting $\bar{P}(V, q)=\left\{\phi \in C l^{\times}(V, q) \mid \overline{A d}_{\phi}(V)=V\right\}(P(V, q) \subset \bar{P}(V, q))$, the twisted adjoint representation induces the representation $\bar{P}(V, q) \rightarrow O(V, q)$.

Proposition 1.10. Suppose that V is finite dimensional and that q is non-degenerated. Then the kernel of the homomorphism $\operatorname{Pin}(V, q) \rightarrow O(V, q)$ is ± 1.
remark: The groups Pin and Spin are generated by the generalized unit sphere $S=\{v \in V \mid q(v)= \pm 1\} ;$ that is,

$$
\begin{aligned}
& \operatorname{Pin}(V, q)=\left\{v_{1} \ldots v_{r} \mid q\left(v_{i}\right)= \pm 1\right\} \\
& \operatorname{Spin}(V, q)=\left\{v_{1} \ldots v_{r} \in \operatorname{Pin}(V, q) \mid r \text { even }\right\}
\end{aligned}
$$

By setting $O_{r, s}=O\left(V, q_{r, s}\right)$ and $S O_{r, s}=S O\left(V, q_{r, s}\right)$, we have the following important results;

Theorem 1.2. Let V be a finite dimensional \mathbb{R}-vector space and suppose q is a nondegenerate quadratic form on V. Then there are short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \operatorname{Spin}_{r, s} \xrightarrow{\overline{A d}} S O_{r, s} \longrightarrow 1, \\
& 0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \text { Pin }_{r, s} \xrightarrow{\overline{A d}} O_{r, s} \longrightarrow 1 .
\end{aligned}
$$

Furthermore, if $(r, s) \neq(1,1)$, these two-sheeted coverings are non-trivial over each componente of $O_{r, s}$. In particular, the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \text { Spin }_{n} \xrightarrow{\frac{\overline{A d}}{\longrightarrow}} S O_{n} \longrightarrow 1 \tag{1.4}
\end{equation*}
$$

represents the universal covering homomorphism of $S O_{n}$, for all $n \geq 3$.

Demonstração. The exact sequence are a direct consequence of proposition 1.10. The non-triviality of the coverings is achieved by exibiting in $S p p i n_{r, s}$ a connected path from 1 to -1 : choose orthogonal vectors $e_{1}, e_{2} \in \mathbb{R}^{n}$ with $q\left(e_{1}\right)=q\left(e_{2}\right)= \pm 1$ (this is possible since $(r, s) \neq(1,1))$. Then the curve $\gamma:[0,1] \rightarrow \operatorname{Spin}_{r, s}$,

$$
\gamma(t)=\left[\cos (t) e_{1}+\operatorname{sen}(t) e_{2}\right] \cdot\left[-\cos (t) e_{1}+\operatorname{sen}(t) e_{2}\right]= \pm \cos (2 t)+\operatorname{sen}(2 t) e_{1} e_{2}
$$

satisfies $\gamma(0)= \pm 1$ and $\gamma(\pi / 2)=\mp 1$.
remark: .

1. Spin $_{3}=S^{3}$ and Spin $_{4}=S^{3} \times S^{3}$.
2. The fundamental groups of $S O_{n}$ and $S O_{r, s}^{0}$ are
(a) $\pi_{1}\left(S O_{n}\right)=\mathbb{Z}_{2}, n \geq 3$,
(b) $\pi_{1}\left(S O_{r, s}^{0}\right)=\pi\left(S O_{r}\right) \times \pi_{1}\left(S O_{s}\right)$ for all r, s.
3. Fixed an orthogonal basis $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n}, the curves $\gamma_{i j}:[0,1] \rightarrow$ Spin $_{n}$, $\gamma_{i j}(t)=\cos (2 t)+\operatorname{sen}(2 t) e_{i} e_{j}$ satisfy $\gamma(0)=1$ and $\gamma^{\prime}(0)=e_{i} e_{j}$. So, the Lie Algebra of S pin n is generated by the pairs $e_{i} e_{j}$ and its dimension is $\frac{n(n-1)}{2}$.
Definition 1.6. A Spin_{n} representation $\triangle: \operatorname{Spin}_{n} \rightarrow G L(W)$ is a representation induced by a Clifford Representation $\operatorname{Spin}_{n} \subset C l_{n} \stackrel{\Delta}{\longrightarrow} G L(W)$. If the representation space W is irredutible, we say that \triangle is a fundamenatl representation
remark: Since $S p i n_{n} \subset C l_{n}^{0}$, a $S p i n_{n}$ representation are induced by a $C l_{n-1}$-representation. Therefore, for each n there is only one fundamental spin representation.

1.3 Spin Structure

In the last section it was shown how to construct the Clifford Algebra $C l(V, q)$ associated to a \mathbb{K}-vector space V endowed with a quadratic form $q: V \rightarrow \mathbb{K}$. In this section, the aim is to extent the construction to riemannian vector bundles $E \xrightarrow{\pi} X$ over a smooth manifold X. Let $E_{x}=\pi^{-1}(x)$ be the fiber over $x \in X$ and consider that E is a orientable vector bundle of rank n endowed with a quadratic form q, where $q_{x}: E_{x} \rightarrow \mathbb{K}$. This constructions starts by considering the Clifford Algebras $C l_{n}\left(E_{x}, q\right)$ and then the
bundle $C l_{n}(E, q)=\cup_{x \in X} C l_{n}\left(E_{x}, q_{x}\right)$. In order to get grips on the transition functions of the bundle $C l_{n}(E, q)$ it is better to construct it as an associated bundle. For this purpose, let $S O(E)=\left\{T \in S O\left(E_{x}\right) \mid \forall x \in X\right\}$ and $P_{S O(E)}$ be the orthogonal frame bundle associated to E (its fibers are diffeomorphic to $S O_{n}$). We recall that the transition function of $P_{S O(E)}$ are the same as E. In fact, by considering the representation $\rho: S O_{n} \rightarrow G L(V)$ induced by the inclusion, we have that

$$
E=P_{S O(E)} \times{ }_{\rho} V
$$

Now, let $\hat{\mathrm{A}}$'s consider the representation $\tilde{\rho}: S O_{n} \rightarrow \operatorname{Aut}\left(C l_{n}\right)$

$$
\tilde{\rho}(g)\left(e_{i_{1}}, \ldots, e_{i_{n}}\right)=\left(\rho(g)\left(e_{i_{1}}\right)\right) \ldots\left(\rho(g)\left(e_{i_{n}}\right)\right) .
$$

In this way, $C l(E)=P_{S O(E)} \times{ }_{\tilde{\rho}} C l_{n}$.
Now, we would like to construct a principal bundle $P_{S p i n_{n}}$ over X associated to the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \text { Spin }_{n} \xrightarrow{\overline{A d}} S O_{n} \longrightarrow 1 \tag{1.1}
\end{equation*}
$$

However, this is not always possible due to an obstruction named $2^{\text {nd }}$ Stiefel-Whitney class $w_{2}(E) \in H^{2}\left(X, \mathbb{Z}_{2}\right)$.

Definition 1.7. Let X be a smooth manifold and $\operatorname{dim}(X) \geq 3$. A spin structure over a vector bundle $\pi: E \rightarrow X$ is a principal bundle $P_{S p i n_{n}}(E)$ and a map $\zeta: P_{S p i n_{n}} \rightarrow P_{S O(E)}$, such that $\zeta(p . g)=\zeta(p) \cdot \overline{A d}(g)$, for all $p \in P_{\text {Spin }_{n}}(E)$ and $g \in S_{S p i n_{n}}$, and such that the diagram below is commutative $\left(\pi \circ \zeta=\pi^{\prime}\right)$

The exact sequence in 1.1 induces an exact sequence at the Cech Cohomology level;

$$
\begin{equation*}
H^{1}\left(X, \mathbb{Z}_{2}\right) \longrightarrow H^{1}\left(X, \text { Spin }_{n}\right) \xrightarrow{\overline{A d}} H^{1}\left(X, S O_{n}\right) \xrightarrow{w_{2}(E)} H^{2}\left(X, \mathbb{Z}_{2}\right), \tag{1.3}
\end{equation*}
$$

where each class in $H^{1}(X, G)$ represents the set of transition functions of a G-principal bundle. Therefore, a class in $H^{1}\left(X, S p i n_{n}\right)$ represents a $S p i n_{n}$-bundle lifted from a $S O_{n}$-bundle $P_{S O(E)}$ (as in diagram 1.2) if, and only if, $w_{2}(E)=0$.

Definition 1.8. A vector bundle $\pi: E \rightarrow X$ is spin if $w_{2}(E)=0$.

1.3.1 Classification of Spin Bundles

From its initial concept, the map $\zeta: P_{S p i n_{n}} \rightarrow P_{S O_{E}}$ is a double cover when restricted to the fibers. Let's investigate the possible maps doing this. A basic fact about 2-covers of a manifold M is that they are classified by $H^{1}\left(X, \mathbb{Z}_{2}\right)$, since a 2 -cover is determined by the kernel of a homomorphism $\pi_{1}(M) \rightarrow \mathbb{Z}_{2}$, which descends to a homomorphism $H_{1}\left(M, \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$ determining a class in $H^{1}\left(M, \mathbb{Z}_{2}\right)$. Therefore, the space of spin structure over $P_{S O(E)}$ is $1 \leftrightarrow 1$ with the classes $\phi \in H^{1}\left(P_{S O(E)}, \mathbb{Z}_{2}\right)$ that are non-trivial when restricted to the fibers of $P_{S O(E)}$.
example: Let X and $f: T^{4} \rightarrow T^{4}$ is a double. The pull-back bundle $f^{*} P_{S O(E)}$ doesn't corresponds to a Spin $_{4}$ structure on a vector bundle $\pi: E \rightarrow T^{4}$.

The bundle sequence $S O_{n} \xrightarrow{i} P_{S O(E)} \xrightarrow{\pi} X$ induces the exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{1}\left(X, \mathbb{Z}_{2}\right) \xrightarrow{\pi^{*}} H^{1}\left(P_{S O(E)}, \mathbb{Z}_{2}\right) \xrightarrow{i^{*}} H^{1}\left(S O_{n}, \mathbb{Z}_{2}\right) \xrightarrow{w_{E}} H^{2}\left(X, \mathbb{Z}_{2}\right), \tag{1.4}
\end{equation*}
$$

where $w_{2}(E)=w_{E}\left(g_{1}\right)$ and g_{1} is the generator of $H^{1}\left(S O_{n}, \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2}$.
Theorem 1.3. Let E be a orientable vector bundle over X. There exists a spin structure over E if, and only if, $w_{2}(E)=0$. Moreover, $H^{1}\left(X, \mathbb{Z}_{2}\right)$ can be identified as the space $\operatorname{Spin}(E)$ of spin structures on E.

Demonstração. If there is a spin structure, then we have seen that $w_{2}(E)=0$. Let's prove the converse. Suppose $w_{2}(E)=0$, by the exact sequence ?? an element $\phi \in$ $H^{1}\left(P_{S O(E)}, \mathbb{Z}_{2}\right)$, non-trivial along the fibers, can be written as $\phi=\pi^{*}(\alpha)+\beta$, where $\alpha \in H^{1}\left(X, \mathbb{Z}_{2}\right)$ and $i^{*}(\beta)=g_{1}$. Since π^{*} is a monomorphism, it follows that whenever $\alpha \neq \alpha^{\prime}$ in $H^{1}\left(X, \mathbb{Z}_{2}\right)$ we have

$$
\phi^{\prime}=\pi^{*}\left(\alpha^{\prime}\right)+\beta \neq \pi^{*}(\alpha)+\beta=\phi .
$$

Therefore, after fixing $\beta \notin \operatorname{Ker}\left(i^{*}\right)$, for each $\alpha \in H^{1}\left(X, \mathbb{Z}_{2}\right)$ corresponds only one spin structure.

Example 1.3. Let \hat{A} 's compute the spin structures on some explicit examples;

1. Consider $\pi: E \rightarrow S^{1}$ as a rank $=2$ riemannian vector bundle with structural group $S O(2)$. In this case, the frame bundle must be trivial, hence $P_{S O(E)}=S^{1} \times S^{1}=T^{2}$ and $w_{2}(E)=0$. According with the theorem 1.3, there are only four spin structures on E, since $H^{1}\left(T^{2}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. The sequence $1 \rightarrow S O_{2} \rightarrow T^{2} \rightarrow S^{1}$ induces the exact sequence

autor: Celso M Doria

Each spin structure is equivalent to an element of form $(\alpha, 1) \in H^{1}\left(T^{2}, \mathbb{Z}_{2}\right), \alpha \in$ $H^{1}\left(S^{1}, \mathbb{Z}_{2}\right)$. So, they are (0,1) and (1,1); each one corresponding to the following 2-covers of T^{2} :
(a) $p_{1}: T^{2} \rightarrow T^{2}, p_{1}\left(e^{i \theta}, e^{i \zeta}\right)=\left(e^{i \theta}, e^{i 2 \zeta}\right) ; T^{2}=S^{1} \times\left(S^{1} / \mathbb{Z}_{2}\right)$.
(b) $p_{2}: T^{2} \rightarrow T^{2}, p_{2}\left(e^{i \theta}, e^{i \zeta}\right)=\left(e^{i 2 \theta}, e^{i 2 \zeta}\right) ; T^{2}=S^{1} \times_{\mathbb{Z}_{2}} S^{1}$.

In this example we can see that although the principal bundles are diffeomorphic to T^{2}, they carry different spin structures.
2. Let $S O_{n}, n \geq 3$, and $\pi: T S O_{n} \rightarrow S O_{n}$ be its tangent bundle. It is well known that the tangent bundle of a Lie Group is trivial, so $T S O_{n}=S O_{n} \times S O_{n}$ and $w_{2}\left(T S O_{n}\right)=0$. Therefore, it admits a spin structure and there are only two of them because $H^{1}\left(S O_{n}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$, for $n \geq 3$. The spin structures correspond to the following 2-covers;

$$
S O_{n} \times S_{\text {Sin }}^{n} \xrightarrow{p_{1}} S O_{n} \times S O_{n}, \quad \text { Spin }_{n} \times \text { Spin }_{n} \xrightarrow{p_{2}} \text { Spin }_{n} \times_{\mathbb{Z}_{2}} \text { Spin }_{n} .
$$

3. Whenever X is an almost complex manifold, then

$$
\begin{equation*}
w_{2}(X)=c_{1}(X) \bmod 2 \tag{1.6}
\end{equation*}
$$

By considering $X=F_{g}$ a closed surface of genus g, then $c_{1}\left(F_{g}\right)=\chi\left(F_{g}\right)=2(1-g)$, and $w_{2}\left(F_{g}\right)=0$. Thus, $T F_{g}$ admits a spin structure and, since $H^{1}\left(F_{g}, \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2}^{2 g}$, there are $2^{2 g}$ spin structures on $T F_{g}$.

Definition 1.9. An orientable riemannian manifold X is spin if $w_{2}(T X)=0$. In this case, X carries a spin structure by fixing a spin structure $s_{X} \in H^{2}\left(X, \mathbb{Z}_{2}\right)$ on $T X$ (notation: $w_{2}(X)=w_{2}(T X)$)
remarks:

1. the spin structure on $T X$ independs on the riemannian metric defined on X, since the inclusion $P_{S O(E)} \rightarrow P_{G L(E)}$ is a homotopy equivalence.
2. A diffeomorphism $f: X \rightarrow X$ may change the spin structure defined on X. The induced isomorphism $f^{*}: H^{1}\left(X, \mathbb{Z}_{2}\right) \rightarrow H^{1}\left(X, \mathbb{Z}_{2}\right)$ may not be the trivial one.

1.3.2 Geometric Meaning of a Spin Structure

Let $w=w_{1}+w_{2}+\cdots+w_{n} \in H^{*}\left(X, \mathbb{Z}_{2}\right)$ be the Total Stiefel-Whitney class, $n=$ $\operatorname{dim}(X)$. Using the Steenrod squaring operations $S q^{k}: H^{j}(X) \rightarrow H^{j+k}$, there exists only one element $v_{k} \in H^{k}(X, \mathbb{Z})$ such that

$$
\left(v_{k} \cup u\right)=S q^{k}(u) \in H^{n}(X, \mathbb{Z}), \quad \forall u \in H^{n-k}\left(X, \mathbb{Z}_{2}\right)
$$

autor: Celso M Doria

Let $S q=\sum_{i=0}^{k} S q^{k}$ be the total Steenrod squaring and $v=1+v_{1}+v_{2}+\ldots$ be the total Wu class. Clearly, v satisfies the identity

$$
v \cup u=S q(u), \quad \forall u \in H^{*}\left(X, \mathbb{Z}_{2}\right)
$$

Proposition 1.11. (Wu's formula [3]) Let $w \in H^{*}\left(X, \mathbb{Z}_{2}\right)$ be the total Stiefel-Whitney class of X :

$$
w=S q(v)
$$

(since $\operatorname{Sq}^{i}(u)=0$ if $i>\operatorname{deg}(u)$, then $v_{k}=0$ for $k>\left[\frac{n}{2}\right]$).
Example 1.4. Let X be an orientable manifold with dimension ≤ 4. By Wu's formula,

$$
\begin{aligned}
& \sum_{i=0}^{4} w_{i}=\sum_{i=0}^{2} S q^{i}(v)=1 \cdot\left(1+v_{1}+v_{2}\right)+v_{1} \cdot\left(1+v_{1}+v_{2}\right)+v_{2}\left(1+v_{1}+v_{2}\right)= \\
& =1+v_{1}+v_{1}^{2}+v_{2}+v_{1} v_{2}+v_{2}^{2} \Rightarrow\left\{\begin{array}{l}
w_{1}=v_{1}=0 \\
w_{2}=v_{1}^{2}+v_{2}=v_{2} \\
w_{3}=v_{1} v_{2}=0 \\
w_{4}=v_{2}^{2}
\end{array}\right.
\end{aligned}
$$

The tangent bundle of closed 3 -manifolds is always trivial, so $w_{2}(X)=0$ and $w=1$. If X is an orientable 4-manifold, then $w=1+w_{2}$, where $w_{2}=v_{2}$ and

$$
w_{2} \cup u=u \cup u, \quad \forall u \in H^{2}\left(X, \mathbb{Z}_{2}\right)
$$

Proposition 1.12. If X is a spin 4-manifold, then $Q(u, u)=0 \bmod 2$ for all $u \in$ $H^{2}(X, \mathbb{Z})$.

Theorem 1.4. Let X be a n-dimensional manifold.

1. If $n \geq 5$, then X is spin if, and only if, all embeded orientable surface in X has trivial normal bundle.
2. If $n=4$, then X is spin if, and only if, the euler class of the normal bundle of an embeded orientable surface in X is even.

Demonstração. The group $H_{2}(X, \mathbb{Z})$ is generated by compact orientable surfaces and so is the group $H_{2}\left(X, \mathbb{Z}_{2}\right)=H_{2}(X, \mathbb{Z}) \otimes \mathbb{Z}_{2}$. By Whitney's Embedding Theorem, if $n \geq 5$ these surfaces can be embedded in X, and if $n=4$ they may have transversal selfintersections which can be removed by the price of increasing the genus of the surface. In both cases, the generating classes are smooth. Let $\iota: \Sigma \rightarrow X$ be such embedding with normal bundle $\nu(\Sigma)$. Then, since $w_{2}(\Sigma)=2(1-g) \bmod 2 \equiv 0 \bmod 2$,

$$
\begin{gather*}
\iota^{*} w_{2}(X)=\iota^{*} w_{2}(T X)=w_{2}\left(\iota^{*} T X\right)=w_{2}(T \Sigma \oplus \nu(\Sigma))= \tag{1.7}\\
w_{2}(T \Sigma)+w_{2}(\nu(\Sigma))=w_{2}(\nu(\Sigma)) . \tag{1.8}
\end{gather*}
$$

Hence,

$$
\begin{align*}
\iota^{*} w_{2}(X)[\Sigma] & =w_{2}(X)\left[\iota_{*}(\Sigma)\right]=w_{2}(\nu(\Sigma))[\Sigma]= \tag{1.9}\\
& =\chi(\nu(\Sigma)) \bmod 2=Q(\Sigma, \Sigma) \bmod 2 \tag{1.10}
\end{align*}
$$

Therefore, $w_{2}(X)=0$ if, and only if, $w_{2}(\nu(\Sigma))[\Sigma]=0$ for all embedded surface in X. Furthermore, if $\operatorname{dim}(\nu(\Sigma)) \geq 3$ (or $n \geq 5$), then $\nu(\Sigma)$ is trivial and so $w_{2}(\nu(\Sigma))=0$. Whenever $\operatorname{dim}(\nu(\Sigma))=2$ (or $n=4$), $w_{2}(X)=0$ iff for any surface its self-intersection number is even.

Corollary 1.3. Let X be simply connected.

1. If $\operatorname{dim}(X) \geq 5$, then X is spin iff every embedded 2-sphere in X has trivial normal bundle.
2. If $\operatorname{dim}(X)=4$, then X is spin iff $Q(u, u) \equiv 0 \bmod 2$, for all $u \in H^{2}(X, \mathbb{Z})$.

Demonstração. It is enough to remark that X being simply connected imply, by Hurewicz's theorem, that $H_{2}(X, \mathbb{Z}) \simeq \pi_{2}(X)$ is generated by spheres. If $\operatorname{dim}(X)=4$, the generating spheres may not be smoothly embedded.

Today, the main question in 4-dimensional smooth topology is about the classification of smooth, closed, simply connected 4 -manifolds. However, the question concerning the realization of quadratic forms as intersection forms of smooth manifolds is still unsolved. There are two very deep theorems about the last question;

Theorem 1.5. (Rohlin) Let X be a smooth, closed 4-dimensional manifold with signature σ_{X}. If X is spin, then

$$
\sigma_{X} \equiv 0 \bmod 16
$$

Theorem 1.6. (Donaldson) Let X be a smooth, closed 4-dimensional manifold. If Q_{X} is positive (negative) definite, then

$$
Q_{X} \simeq 1 \oplus 1 \oplus \cdots \oplus 1, \quad(-1 \oplus-1 \oplus \cdots \oplus-1)
$$

Corollary 1.4. X spin and positive definite, then $\operatorname{rk}\left(Q_{X}\right) \equiv 0 \bmod 16$.

1.3.3 Interpretation of w_{2} as an Obstruction

A a smooth manifold X admits a $C W$-complex structure $K=\cup_{i=0}^{n} K_{i}$, where $K^{(i)}$ is the i-skeleton and the underlying polyhedron is $|K|=X$. Besides, the $C W$-structure can be induced by a handle decomposition, as decribed in the next section.

For a vector bundle $p: E \rightarrow X$, the $2^{\text {nd }}$ Stiefel-Whitney class measures the extendability of a trivialization τ over the 1 -skeleton $K^{(1)}$ to the 2 -skeleton $K^{(2)}$. Let $C_{i}(X)$ be the $i^{\text {th }}$-chain \mathbb{Z}-module, $Z_{i}(X)=\operatorname{Ker}(\partial)$ be $i^{\text {th }}$-cycles submodule and $B_{i}(X)=\operatorname{Im}(\partial)$ be the $i^{\text {th }}$-boundaries submodule. Also, there is the dual submodules $C^{i}(X), Z^{i}(X)$ and $B^{i}(X)$.

Let's start by discussing the orientability of a bundle $p: E \rightarrow X$. Consider $c \in$ $C_{1}(X), c:[0,1] \rightarrow X$, with a frame β_{0} fixed at $c(0)$ and another one β_{1} fixed at $c(1)$. It is natural to ask if it is possible to continuously extend the frames β_{0}, β_{1} over c. Clearly, if β_{0} and β_{1} belong to the same connected component of O_{n} then the extension can be continously performed, otherwise it can not be performed since they lie in distinct connected component. This is better interpreted as a map $w_{1}(E, \tau): S^{0} \rightarrow \pi_{0}\left(O_{n}\right)$ associating to a trivialization τ on $\partial c=S^{0}$ a class in $\pi_{0}\left(O_{n}\right) \simeq \mathbb{Z}_{2}$, where the value is 0 if the frames are in the same component and 1 otherwise. This procedure when applied to 1-cycles in $Z_{1}(X, \mathbb{Z})$ induces a homomorphism $w_{1}(E, \tau): Z_{1}(X, \mathbb{Z}) \rightarrow \mathbb{Z}_{2}$.

Proposition 1.13. Let E be a rank n real vector bundle over a smooth manifold X. So,

1. $\delta w_{1}(E, \tau)=0$.
2. Let τ^{\prime} and τ be distincts trivializations over the 1 -skeleton $K^{(1)}$. Then there exists a class $\eta_{0} \in C_{0}(X)$ such that

$$
w_{1}\left(E, \tau^{\prime}\right)-w_{1}(E, \tau)=\delta \eta_{0} .
$$

Hence, $w_{1}(E, \tau) \in H^{1}\left(X, \mathbb{Z}_{2}\right)$ independs on τ.
Demonstração. .

1. For $s \in C_{2}(X), \delta w_{1}(E, \tau)(s)=w_{1}(E, \tau)(\partial s)$. From the classification of compact surfaces, it is known that $|s|$ has the homotopy type of a bouquet $\bigvee_{i=1}^{2 g} S^{1}$, where g is the genus of $|s|$. Besides, ∂s is homotopic to the bouquet, so $w_{1}(E, \tau)(\partial s)=$ $\prod_{i=1}^{2 g} w_{1}(E, \tau)=0 \bmod 2$. Therefore, $w_{1}(E, \tau)(\partial s)=0$.
2. If τ^{\prime} and τ are distincts trivialization, then $w_{1}\left(E, \tau^{\prime}\right)$ and $w_{1}(E, \tau)$ take different values in $\pi_{0}\left(O_{n}\right)$. So, for any 1 -chain $c \in C_{1}(X),\left(w_{1}\left(E, \tau^{\prime}\right)-w_{1}(E, \tau)\right)(c)$ measures the difference on a 0 -chain $q=\partial c \in C_{0}(X)$, which is nothing else than just a coboundary $\delta \eta_{0}$.

Definition 1.10. The $1^{\text {st }}$ Stiefel-Whitney class of a vector bundle E is $w_{1}(E) \in H^{1}\left(X, \mathbb{Z}_{2}\right)$. E is an orientable vector bundle if $w_{1}(E)=0$.

The same sort of question can be asked by analysing the case of extending a trivialization (frame) of an oriented vector bundle E over the 1-complex $K^{(1)}$ to a trivialization over the 2 -chain complex $K^{(2)}$. First of all, let's fix an trivialization τ on $K^{(1)}$. For each 1-cycle $\gamma \in Z_{1}(X), \tau$ is a map $\tau: \gamma^{*} E \rightarrow S^{1} \times \mathbb{R}^{n}$ given by

$$
\tau\left(p^{-1}(t)\right)=\left(t ; e_{1}(t), \ldots, e_{n}(t)\right)
$$

Thus, for each $\gamma \in C_{1}(X)$, there is a map $\tau_{\gamma}: S^{1} \rightarrow S O_{n}, \tau_{\gamma}(t)=\left(e_{1}(t), \ldots, e_{n}(t)\right)$. Therefore, a trivialization τ over a closed curve $\gamma: S^{1} \rightarrow X$ induces a class $\left[\tau_{\gamma}\right] \in$ $\pi_{1}\left(S O_{n}\right)$, where $\pi_{1}\left(S O_{n}\right) \simeq \mathbb{Z}_{2}$ whenever $n>2$, and $\pi_{1}\left(S O_{2}\right)=\mathbb{Z}$. Assuming that E is an oriented vector bundle, it admits a trivialization τ over the 1 -skeleton $K^{(1)}$. The restriction of τ over the boundary $\partial \triangle$ of a 2 -simplex \triangle extends over \triangle iff $\left[\tau_{\partial \Delta}\right]=0$. By defining $w_{2}(E, \tau)(\triangle)=\left[\tau_{\partial \Delta}\right]$, we have a homomorphism $w_{2}(E, \tau): C_{2}(X) \rightarrow \pi_{1}\left(S O_{n}\right)$. Now, let $S \subset K^{(2)}$ be a submodule of $Z_{2}(X)$. From the classification theorem of compact surfaces, $|S|$ is homotopic to $\left(\bigvee_{i=1}^{2 g} S^{1}\right) \sqcup D^{2}$, where g is the genus of $|S|$. Let \hat{S} be a submodule of S such that $|S|=|\hat{S}| \sqcup D^{2}$. Therefore, the bundle E is trivial over \hat{S} and it extents over S iff $\left[\tau_{\partial \hat{S}}\right]=0$. Thus,

$$
w_{2}(E, \tau)(|S|)=\left[\tau_{\partial \hat{S}}\right]
$$

and E extends over S iff $w_{2}(E, \tau)(|S|)=0$.
Proposition 1.14. Let E be a rank n oriented real vector bundle over a smooth manifold X. So,

1. $\delta w_{2}(E, \tau)=0$.
2. Let τ^{\prime} and τ be distincts trivialization over the 1 -skeleton $K^{(1)}$. Then there exists a class $\eta_{1} \in C^{1}(X)$ such that

$$
w_{2}\left(E, \tau^{\prime}\right)-w_{2}(E, \tau)=\delta \eta_{1}
$$

Hence, $w_{2}(E, \tau) \in H^{2}\left(X, \mathbb{Z}_{2}\right)$ independs on τ.
Demonstração. .

1. For $Q \in C_{3}(X), \delta w_{2}(E, \tau)(Q)=w_{2}(E, \tau)(\partial Q)$. First of all, let's decompose Q as $Q=\sum_{i=1}^{n} q_{i} \triangle_{i}^{3}$, where $\triangle_{i}^{3}, i=1, \ldots, n$, are 3 -simplex. For each $i \in\{1, \ldots, n\}$, we have $w_{2}(E, \tau)\left(\partial \triangle_{i}^{3}\right)=0$ because every trivialization over $\partial \triangle_{i}^{3}$ extends over \triangle_{i}^{3}, since $\pi_{2}\left(S O_{n}\right)=0$ for $n>2$. Therefore, E is trivial over $K^{(3)}$. Hence, E is trivial over $\partial Q \in Z_{2}(X)$ and $w_{2}(E, \tau)(\partial Q)=0$.
2. By considering τ^{\prime} and τ distincts trivialization, $w_{2}\left(E, \tau^{\prime}\right)$ and $w_{2}(E, \tau)$ assume different values in $\pi_{1}\left(S O_{n}\right)$ when computed on $s \in C_{2}(X)$. In this way, for any $s \in C_{2}(X)$,

$$
\left(w_{2}\left(E, \tau^{\prime}\right)-w_{2}(E, \tau)\right)(s)=\left[\tau_{\partial s}^{\prime}\right]-\left[\tau_{\partial s}\right]
$$

autor: Celso M Doria
measures the difference on a 1-chain $c=\partial s \in C_{1}(X), c=\partial s$, which is nothing else than just a coboundary $\delta \eta_{1}: C_{1}(X) \rightarrow \mathbb{Z}_{2}$.

Definition 1.11. The $2^{\text {nd }}$ Stiefel-Whitney class of an oriented, real vector bundle E is $w_{2}(E) \in H^{2}\left(X, \mathbb{Z}_{2}\right) . E$ is a spin bundle if $w_{2}(E)=0$.

Example 1.5. Every closed, oriented, compact surface Σ_{g} of genus g is spin. As described above, by considering $\Sigma_{g}=\hat{\Sigma}_{g} \sqcup D^{2}$, the class $w_{2}(X) \in H^{2}\left(X, \mathbb{Z}_{2}\right)$ is measured by fixing a trivilization τ of $T \Sigma_{g}$ over $\hat{\Sigma}_{g}$ and computing the class [$\tau_{\partial \hat{\Sigma}}$]. In this way, τ defines a frame $\beta=\left\{e_{1}, e_{2}\right\}$ over $\hat{\Sigma}$. The Hopf theorem states that the index of each vector field e_{1} and e_{2} must be equal to the Euler characteristic $\chi\left(\Sigma_{g}\right)=2(1-g)$, what means that the maps $e_{i}: \partial D^{2} \rightarrow S O_{n}$ induces the class $\left[\tau_{i}\right]=0 \in \mathbb{Z}_{2}$. Therefore, the frame β extends over D^{2}, hence over Σ_{g}.

It follows from the former discussion that, for all oriented real vector bundle E, the space of orientations on E is parametrized by $H^{0}\left(X, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$ and the space of spin structure is parametrized by $H^{1}\left(X, \mathbb{Z}_{2}\right)$.

1.3.4 Spin Structure on a Handlebody

A k-handle h_{k} of dimension n is, by definition, the space $h_{k}=D^{k} \times D^{n-k} \stackrel{\text { homeo }}{\simeq} D^{n}$. A k-handle has the following subsets;

1. the core of h_{k} is $D^{k} \times\{0\}$ and its cocore is $\{0\} \times D^{n-k}$.
2. the attaching a-sphere of h_{k} is $A=S^{k-1} \times\{0\}$ and the belt b-sphere is $B=$ $\{0\} \times S^{n-k-1}$. (convention: $\left.S^{-1}=\{1\}.\right)$

A handle decomposition of a smooth manifold X is a decomposition

$$
X=\mathcal{H}_{0} \cup \mathcal{H}_{1} \cup \cdots \cup \mathcal{H}_{k} \cup \cdots \cup \mathcal{H}_{n}
$$

where $\mathcal{H}_{k}=\cup_{i=1}^{n_{k}} h_{k}^{i}$ is the union of $n_{k} k$-handles, each one corresponding to a critical value of a Morse function $f: X \rightarrow \mathbb{R}$ with Morse index k. Fortunetely, it can be assumed that the critical values of f are in crescent order according with their indexes. Thus, let

$$
X^{0}=\mathcal{H}^{0}, X^{1}=X^{0} \cup \mathcal{H}_{1}, \ldots, X^{k}=X^{k-1} \cup \mathcal{H}_{k}, \ldots, X^{n}=X^{n-1} \cup \mathcal{H}_{n} .
$$

Each piece X^{k} is a n-manifold with boundary. In order to attach a k-handle over ∂X^{k-1}, we need to perscribe two pieces of data:

1. the isotopy class of an embedding $\phi: S^{k-1} \times \mathbb{R}^{n-k}$ with trivial normal bundle. (ϕ is the attaching map);
2. a normal framing τ of $\phi\left(S^{k-1}\right)$ corresponding to the identification of the normal bundle $\nu\left(\phi\left(S^{k-1}\right)\right)$ with $S^{k-1} \times \mathbb{R}^{n-k}$.

The normal framing τ corresponds to a map $\tau: S^{k-1} \rightarrow G l_{n-k}$, and so, each normal framing is defined, up to homotopy, as an element in $\pi_{k-1}\left(G l_{n-k}\right)$. In dimension 4,

$$
\pi_{k-1}\left(G l_{4-k}\right)=\left\{\begin{array}{lc}
\mathbb{Z}_{2}, \quad k=1 \tag{1.11}\\
\mathbb{Z}, & k=2 \\
1, & k=3,4
\end{array}\right.
$$

Therefore, in dimension 4 the framing of a 2-handle is specified by an integer number. A trivialization τ over the attaching sphere $A=S^{1} \times\{0\}$ extends to a trivialization over the core of a 2 -handle iff the framing $\tau_{A} \in 2 \mathbb{Z}$.

Definition 1.12. A n-dimensional handlebody is a n-manifold X admiting a handle decomposition

$$
X=D^{n} \cup \mathcal{H}_{1} \cup \cdots \cup \mathcal{H}_{k} \cup \cdots \cup \mathcal{H}_{n-1},
$$

where $\mathcal{H}_{k}=\cup_{i=1}^{n_{k}} h_{k}^{i}$ is the union of $n_{k} k$-handles.

Example 1.6. Let $X=D^{4} \cup h_{1} \cup h_{2}$ be a 4 -manifold obtained by attaching two 2handles to the ball $X=D^{4}$. The attaching spheres $A_{1}, A_{2} \subset S^{3}=\partial D^{4}$ are knots in S^{3}. The Seifert surfaces S_{1}, S_{2} associated to each knot, respectively, when capped off by the core of the 2 -handles define surfaces Σ_{1}, Σ_{2}. Thus, $H_{2}(X, \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z}$ is generated by $\left[\Sigma_{1}\right]$ and $\left[\Sigma_{2}\right]$. The quadratic form $Q_{X}: H_{2}(X, \mathbb{Z}) \times H_{2}(X, \mathbb{Z}) \rightarrow \mathbb{Z}$ is defined as the linear extension of

$$
Q_{X}\left(\left[\Sigma_{i}\right],\left[\Sigma_{j}\right]\right)=l k\left(A_{i}, A_{j}\right), i, j=1,2,
$$

where $l k\left(A_{i}, A_{j}\right)$ is the linking number among A_{i} and A_{j}. In the case $i=j$ the linking number is exactly the framing of A_{i}. Therefore, X is spin iff the framings of $\left[\tau_{A_{1}}\right]$ and $\left[\tau_{A_{2}}\right]$ are in $2 \mathbb{Z}$.

In the example above it is shown how a 2 -handle h attached to D^{4} determines a surface Σ_{h} in $X=D^{4} \cup h$. By sliding a 2 -handle h_{1} over a 2 -handle h_{2} we obtain a new 2-handle h because its attaching sphere is not A_{1} anymore. The surface Σ_{h} obtained by attaching h represents the homology class $\left[\Sigma_{h}\right]=\left[\Sigma_{h_{1}}\right]+\left[\Sigma_{h_{2}}\right]$, so

$$
\begin{equation*}
Q_{X}\left(\left[\Sigma_{h}\right],\left[\Sigma_{h}\right]\right)=\left\{Q_{X}\left(\left[\Sigma_{h_{1}}\right],\left[\Sigma_{h_{1}}\right]\right)+Q_{X}\left(\left[\Sigma_{h_{2}},\left[\Sigma_{h_{2}}\right]\right)\right\} \bmod 2 .\right. \tag{1.12}
\end{equation*}
$$

Proposition 1.15. Let Y^{3} be a closed 3-manifold. Thus, Y bounds a handlebody X^{4} constructed by using only one 0-handle and several 2-handles.

Demonstração. Its is known that every closed 3-manifold is the boundary of a 4-manifold W. A handle decomposition of W can be obtained by using only one 0 -handle and no 4 -handles. The 1 -handles can be cancelled by attaching 2 -handles along the cores of the 1-handles killing the $\pi_{1}(W)$ generators. By turning the handlebody upside down the 3 -handles became 1-handles and the same process can be appllied to end up with only 2 -handles and one 0 -handle.

Proposition 1.16. Let Y be a closed 3-manifold endowed with a spin structre s_{Y}. Thus, there exists a closed surface Σ_{g} of genus g and a spin structure s_{M} on $M=S^{1} \times \Sigma_{g}$ such that $\left(Y, s_{Y}\right)$ is spin cobordant to $\left(M, s_{M}\right)$.

Demonstração. Consider $X=(Y \times[0,1]) \cup_{i=1}^{n} h_{i}$, where h_{i} are 2-handles attached to $Y \times\{1\}$ with framing n_{i}. If the framings n_{i} are even numbers, then the spin structure s_{Y} extends to a spin structure s_{X} on X and we define $M=\varnothing$. In case there are 2-handles with odd framings, suppose they are h_{1} and h_{2}, we can slide h_{2} over h_{1} in order to replace h_{2} by the new 2 -handle h_{2}^{\prime} with frame $n \in 2 \mathbb{Z}$ (compute it using equation 1.12). Therefore, we are left with just one 2-handle h with odd framing. Whenever the number of odd framed 2-handles is greater than two, this procedure can be carried out to end up with only one odd framed 2 -handle denoted by h.

By erasing the cocore of h, the effect of attaching h is canceled out. However, we can consider the Seifert surface $S_{b s} \subset Y \times\{1\}$ of the belt sphere of h and capp it off with the cocore of h to construct the genus g closed surface $F_{g}=\left(\{1\} \times D^{2}\right) \cup S_{b s}$. Let $\nu\left(F_{g}\right)$ be F_{g} normal bundle. In this way, it has been constructed a cobordism \widehat{X} among Y and $\partial \nu\left(F_{g}\right)$. It may not be true that $\nu\left(F_{g}\right)=D^{2} \times F_{g}$. By modifying \widehat{X} we can obtain a cobordism \widetilde{X} among Y and $S^{1} \times F_{g}$. The bundle $\nu\left(F_{g}\right)$ is trivial iff the U_{1}-bundle $\partial\left(\nu\left(F_{g}\right)\right)$ is trivial. In order to turn the U_{1}-bundle $\partial \nu\left(F_{g}\right)$ into a trivial bundle it is necessary to became null its $1^{s t}$-Chern class c_{1}. If $c_{1}\left(\partial \nu\left(F_{g}\right)\right)>0$, then by connecting sum \widetilde{X} with $\overline{\mathbb{C P}}^{2}$ and tubing F_{g} with $\mathbb{C} P^{1} \subset \overline{\mathbb{C P}}^{2}$, the $1^{\text {st }}$ Chern class of the U_{1}-bundle $\partial\left(\nu\left(F_{g}\right)\right)$ is decreased by 1 , and the tubing process can go on until $c_{1}\left(\partial \nu\left(F_{g}\right)\right)=0$. If $c_{1}\left(\partial \nu\left(F_{g}\right)\right)<0$, by connecting sum with $\mathbb{C} P^{2}$ and tubing with $\mathbb{C} P^{1} \subset \mathbb{C} P^{2}$ then $c_{1}\left(\partial \nu\left(F_{g}\right)\right)$ is increased by 1 . Now, the spin structure s_{Y} can be extended over X, hence defines a spin structure s_{M} on $M=S^{1} \times F_{g}$.

Next, let's see that $S^{1} \times F_{g}$ is spin cobordant to a finite union of 3 -toris T^{3}.
Lemma 1.1. Consider $S^{1} \times F_{g}$ endowed with a spin structure s. Thus, there are a finite number of spin 3-toris $\left(T_{i}^{3}, s_{i}\right)$ endowed with a spin structure $s_{i}, i \in\{1, \ldots, n\}$ and a spin 4-manifold $\left(W, s_{W}\right)$ such that:

$$
\begin{aligned}
& \text { 1. } \partial W=\left(S^{1} \times F_{g}\right) \sqcup\left(\cup T_{i}^{3}\right) \text {, } \\
& \text { 2. }\left.s_{W}\right|_{S^{1} \times F_{g}}=s \text { and }\left.s_{W}\right|_{T_{i}^{3}}=s_{i}
\end{aligned}
$$

Demonstração. The kernel of the proof relies on the fact that F_{g} is spin cobordant to $\sqcup_{i=1}^{g} T_{i}^{2}$. In order to verify this fact it is enough to consider a set of curves $\left\{\gamma_{1}, \ldots, \gamma_{g-1}\right\}$
splitting F_{g} into surfaces of genus 1 . Consider the 3 -manifold $F_{g} \times[0,1]$. By attaching 2handles $h_{i}=D^{2} \times D^{1}$, wich attaching spheres are $A_{i}=\gamma_{i} \times\{1\}$, we obtain a coboundary among F_{g} and $\sqcup_{i=1}^{g} T_{i}^{2}$. Any spin structure on F_{g}, when restricted to $\gamma_{i}, i=1, \ldots, g-1$, can be extended to the core of h_{i}. So, it extends to T_{i}^{2}. Therefore, if F_{g} is spin cobordant to a union of $g 2$-toris, then $S^{1} \times F_{g}$ is spin cobordant to a union of $g 3$-toris T^{3}.

Lemma 1.2. Let $s \in \operatorname{Spin}\left(T^{3}\right)$. Thus, there is a spin manifold $\left(X, s_{X}\right)$ such that $\left(T^{3}, s\right)$ bounds X, s_{X}).

Theorem 1.7. All closed spin 3-manifold $\left(Y, s_{Y}\right)$ bounds a compact spin 4-manifold $\left(X, s_{X}\right)$ such that $\left.s_{X}\right|_{Y}=s_{Y}$.

1.4 Almost Complex Structures

An almost complex structure on a smooth manifold X is an automorphism $J: T X \rightarrow$ $T X$ such that $J^{2}=-1$. In this case, we say that (X, J) is an almost complex manifold. remark: If (X, J) is an amost complex manifold, then X is even dimensional.

The vector bundle $(T X, J)$ being a complex bundle allows one to consider the Chern classes $c_{i}(X, J)=c_{i}(T X, J), i=0, \ldots, \operatorname{dim}_{\mathbb{C}}(X)$. In the case X is a 4 -manifold, the almost complex surface (X, J) has two Chern classes: $c_{1}(X, J)$ and $c_{2}(X, J)$. Besides, $c_{2}(X, J)=\chi(X)$ (the euler class of $T X$) and $c_{1}(X, J)=c_{1}\left(K_{J}^{*}\right)$, where $K_{J}^{*}=$ $\operatorname{det}_{\mathbb{C}}(T X, J)$ is the anti-canonical bundle ${ }^{1}$ of (X, J).

In this section, let X be an oriented $2 n$-dimensional manifold.

1.4.1 Complex Structures on $\mathbb{R}^{2 n}$

In $\mathbb{R}^{2 n}$, the canonical complex structure is

$$
J_{0}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) .
$$

Let $G L_{n}\left(J_{0}, \mathbb{C}\right)=\left\{A \in G L_{2 n}(\mathbb{R}) \mid A J_{0}=J_{0} A\right\}$, so

$$
M \in G L_{n}\left(J_{0}, \mathbb{C}\right) \quad \Leftrightarrow \quad \exists A, B \in G L_{n}(\mathbb{R}) \quad \text { such that } \quad\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right)=A+i B
$$

In this way, the space of complex structures on $\mathbb{R}^{2 n}$ is $\mathcal{C}=G L_{2 n}(\mathbb{R}) / G L_{n}\left(J_{0}, \mathbb{C}\right)$. An amost complex structure on X is equivalent to a map $X \rightarrow \mathcal{C}, x \mapsto J_{x}$ where J_{x} : $T_{x} X \rightarrow T_{x} X$ and $J_{x}^{2}=-I$. So, the space of complex structures on $T_{x} X$ is $\mathcal{C}_{x}=$ $G L_{2 n}(\mathbb{R}) / G L_{n}\left(J_{x}, \mathbb{C}\right)$. By considering the bundle

$$
\mathfrak{C}_{X}=\cup_{x \in X} G L_{2 n}(\mathbb{R}) / G L_{n}\left(J_{x}, \mathbb{C}\right)
$$

[^0]with fiber \mathcal{C}, an almost complex structure on X is a section in \mathfrak{C}_{X}.
The following theorem sets a necessary and sufficient condition to the existence of a almost complex stucture on a 4-manifold X;

Theorem 1.8. Let X be a closed smooth 4-manifold.

1. If X admits an almost complex structure J, then

$$
\begin{equation*}
c_{1}^{2}(X, J)=3 \sigma_{X}+2 \chi(X) \tag{1.1}
\end{equation*}
$$

and $c_{1}(X, J)$ must be an integral lift of $w_{2}(X)$. Furthermore, $b_{2}^{+}(X)+b_{1}(X)$ must be odd.
2. If there exists an class $\vartheta \in H^{2}(X, \mathbb{Z})$ being a integral lift of $w_{2}(X)$ and satifisfying

$$
\vartheta^{2}=3 \sigma_{X}+2 \chi(X),
$$

then X admits an almost complex structure J with $c_{1}(X, J)=\vartheta$.
Moreover, assuming either that X is simply connected or has indefinite intersection form, such class ϑ exist whenever $b^{+}(X)+b_{1}(X)$ is odd.

Demonstração. 1. (\Rightarrow) For any compex vector bundle we have $w_{2}(E)=c_{1}(E) \bmod 2$ and also its $1^{\text {st }}$ Pontrjagin class is

$$
p_{1}(E)=-c_{2}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right)=-c_{2}\left(E \oplus E^{*}\right)=c_{1}(E) \cdot c_{1}(E)-2 c_{2}(E)
$$

By restricting to our case $E=(T X, J)$, where $p_{1}(T X)=3 \sigma_{X}$ and $c_{2}(T X)=\chi(X)$, it follows that $c_{1}^{2}(T X, J)=3 \sigma_{X}+2 \chi(X)$.
2. (\Leftarrow) Let L be the complex line bundle over X with $c_{1}(L)=\vartheta$, and consider $E_{\vartheta}=L \oplus \mathbb{C}$, so $c_{1}\left(E_{\vartheta}\right)=\vartheta$. Now, we cut off a ball $D^{4} \subset X$ and glue it back using a $S U_{2}$-twist in order to obtain a bundle $E_{\vartheta, \chi(X)}$ with $c_{2}=\chi(X)$; the class $c_{1}=\vartheta$ is preserved through this sort of surgery. The bundle $E_{\vartheta, \chi}$ is complex and its characteristic numbers are

$$
\begin{aligned}
& w_{2}\left(E_{\vartheta, \chi(X)}\right)=w_{2}(T X), \quad e\left(E_{\vartheta, \chi(X)}\right)=c_{2}\left(E_{\vartheta, \chi(X)}\right)=\chi(X)=c_{2}(T X), \\
& p_{1}\left(E_{\vartheta, \chi(X)}\right)=c_{1}^{2}\left(E_{\vartheta, \chi(X)}\right)-2 c_{2}\left(E_{\vartheta, \chi(X)}\right)=\vartheta^{2}-2 \chi(X)=p_{1}(T X)
\end{aligned}
$$

By Dold-Whitney theorem [1], the isomorphism classes of bundles over a 4-complex are classified by their numbers w_{2}, p_{1} and the euler class e. Consequently, the bundles $E_{\vartheta, \chi(X)}$ and $T X$ are isomorphic and the complex structure on the fibers of E can be transported to an almost complex structure on $T X$.

Corollary 1.5. If X^{4} admits an almost complex structure, then it must be that $b_{2}^{+}(X)+$ $b_{1}(X)$ is odd.

Demonstração. Let $c_{1}(J)$ be the $1^{\text {st }}$ Chern class of X, so $c_{1}^{2}(J)=3 \sigma_{X}+2 \chi(X)$. By van der Blij's lemma, we have

$$
c_{1}^{2}(J)=\sigma_{X} \bmod 8,
$$

and thus $\sigma_{X}+\chi(X)=0 \bmod 4$. Further, $\sigma_{X}=b_{2}^{+}-b_{2}^{-}$and $\chi(X)=2-2 b_{1}+b_{2}^{+}+b_{2}^{-}$, and hence $2 b_{2}^{+}-2 b_{1}(X)+2=0 \bmod 4$. Therefore,

$$
b_{2}^{+}+b_{1}=1 \bmod 2 .
$$

Corollary 1.6. For every characteristic element $\underline{w} \in H^{2}\left(X, \mathbb{Z}_{2}\right)$, there is a partial almost-complex structure $\left.J\right|_{3}$ over the 3-skeleton of X, with $c_{1}\left(\left.J\right|_{3}\right)=\underline{w}$.
Demonstração. It may exists a characteristic element $\underline{\mathrm{w}}$ which integral lifts do not satisfy the identity 1.1. In this case, in the proof of theorem 1.8, the bundles $E_{\vartheta, \chi(X)}$ and $T X$ are isomorphic over the 3 -skeleton of X, or equivalently, over $X-\{\text { point }\}^{2}$.
Definition 1.13. Let X be a manifold endowed with an almost complex structure J. A surface $S \subset X$ is called a J-holomorphic curve (or pseudo-holomorphic curve) if its tangent bundle is J-invariant $(J(T S)=T S)$.
Theorem 1.9. (Adjunction Inequality) Let (X, J) be a almost complex 4-manifold and S is a pseudo-holomorphic curve in X, then we have

$$
\begin{equation*}
\chi(S)+S . S=K^{*} . S \tag{1.2}
\end{equation*}
$$

Demonstração. Observing that $c_{1}\left(K^{*}\right)=c_{1}(T X)$ (notation $K^{*}=c_{1}\left(K^{*}\right)$), we have

$$
\begin{aligned}
K^{*} . S & =c_{1}(T X)(S)=c_{1}\left(\left.T X\right|_{S}\right)=c_{1}(T S \oplus \nu S)= \\
& =c_{1}(T S)+c_{1}(\nu S)=\chi(S)+S . S
\end{aligned}
$$

remarks: Let's fix a riemannian metric on $X^{2 n}$, so the following facts are relevant in the presence of an almost complex structure J defined on X;

1. the adjunction inequality 1.2 is the main ingredient to estimate the lower genus of a surface $\Sigma \subset X$ representing the class S.
2. J induces a reduction to U_{n} of the structural group $S O_{2 n}$ of $T X$.
3. If $n=2, J$ is equivalent to the existence of a foliation of codimension 2 of X^{4}.
[^1]
1.5 Spin c Structures

The monomorphism $\left.\phi: \mathbb{C} \rightarrow M_{(}, \mathbb{R}\right), \phi(a+i b)=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ induces the standard inclusion $\iota: U_{n} \rightarrow S O_{2 n}$ and the canonical homomorphism $\iota \times \operatorname{det}: U_{n} \rightarrow S O_{2 n} \times U_{1}$, given by $(\iota \times \operatorname{det})(A)=(\iota(A), \operatorname{det}(A))$. The covering map $p: S p i n_{n} \rightarrow S O_{n}$, under an almost complex structure J, is given by

$$
p\left[\prod_{k=1}^{n}\left(\cos \left(\theta_{k}\right)+\sin \left(\theta_{k}\right) e_{k} J\left(e_{k}\right)\right)\right]=\left(\begin{array}{ccccc}
R_{2 \theta_{1}} & 0 & 0 & \ldots & 0 \\
0 & R_{2 \theta_{2}} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & R_{2 \theta_{n}}
\end{array}\right),
$$

where $R_{\theta_{k}}=\left(\begin{array}{cc}\cos \left(\theta_{k}\right) & -\operatorname{sen}\left(\theta_{k}\right) \\ \operatorname{sen}\left(\theta_{k}\right) & \cos \left(\theta_{k}\right)\end{array}\right)$. The kernel of p is $\operatorname{Ker}(p)=\{ \pm 1\} \simeq \mathbb{Z}_{2}$.
The scenario induces one to lift the homomorphism $\iota \times \operatorname{det}: U_{n} \rightarrow S O_{2 n} \times U_{1}$ to $\hat{p}: \operatorname{Spin}_{2 n} \times U_{1} \rightarrow S O_{2 n} \times U_{1}$

Neverthless, the lif above does not reveal any interesting new structure. Once $H^{1}\left(S O_{2 n} \times\right.$ $\left.U_{1}, \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, there are three non trivial 2-covers for $S O_{2 n} \times U_{1}$, and the interesting one is $\operatorname{Spin}_{2 n} \times_{\mathbb{Z}_{2}} U_{1}$;

Definition 1.14. The $S p i n_{n}^{c}$ group is

$$
\operatorname{Spin}_{n}^{c}=\operatorname{Spin}_{n} \times_{\mathbb{Z}_{2}} U_{1} .
$$

In this way, it is natural to consider the lift as shown in the diagramm below:

Now, there is a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \operatorname{Spin}_{n}^{c} \xrightarrow{\xi} S O_{n} \times U_{1} \longrightarrow 1 \tag{1.1}
\end{equation*}
$$

autor: Celso M Doria
where $\mathbb{Z}_{2} \subset \operatorname{Spin}_{n}^{c}$ is generated by the classes $[(-1,1)]=\{(-1,1),(1,-1)\}$ and $[(1,1)]=$ $\{(-1,-1),(1,1)\}$. Besides, $\operatorname{Spin}_{n}^{c} \subset \mathbb{C} l_{n}=C l_{n} \otimes \mathbb{C}$ as a multiplicative subgroup of the group of units.

A $S p i{ }^{\mathbb{C}}$-structure on a complex bundle E is defined as folows;
Definition 1.15. Let E be a vector bundle over X with frame bundle $P_{S O(E)}$. A Spin ${ }^{\mathbb{C}}$-structure on E consist of a pair of principal bundles $P_{U_{1}}$ and $P_{S p i n^{\mathbb{C}}}$ with an $S p i n_{n}^{\mathbb{C}}$-equivariant bundle map $\xi: P_{S p i n} \mathbb{C} \rightarrow P_{S O(E)} \times P_{U_{1}}(\xi(p g)=\xi(p) \xi(g))$ such that the diagram below is commutative;

The short exact sequence 1.1 induces the exact sequence

$$
H^{1}\left(X ; \operatorname{Spin}^{\mathbb{C}}\right) \xrightarrow{\xi} H^{1}\left(X ; S O_{n}\right) \oplus H^{1}\left(X, U_{1}\right) \xrightarrow{w_{2}+\rho} H^{2}\left(X, \mathbb{Z}_{2}\right),
$$

where $\rho: H^{1}(X, \mathbb{Z}) \rightarrow H^{1}\left(X, \mathbb{Z}_{2}\right)$ is mod 2 reduction. However, by the isomorphism $H^{1}\left(X, U_{1}\right) \simeq H^{2}(X, \mathbb{Z})$, the exact sequence becames

$$
\begin{equation*}
H^{1}\left(X ; \operatorname{Spin}^{\mathbb{C}}\right) \xrightarrow{\xi} H^{1}\left(X ; S O_{n}\right) \oplus H^{2}(X, \mathbb{Z}) \xrightarrow{w_{2}+\rho} H^{2}\left(X, \mathbb{Z}_{2}\right) . \tag{1.3}
\end{equation*}
$$

Therefore, a S Sin ${ }^{\mathbb{C}}$-structure $\xi: P_{S p i n} \mathbb{C}^{\mathbb{C}} \rightarrow P_{S O(E)} \times P_{U_{1}}$ exists iff there exists a integral class $u \in H^{2}(X, \mathbb{Z})$ such that $w_{2}(E)=\rho(u) \bmod 2$.
remarks:

1. The letter "c" in the subscript of Spin ${ }^{\mathbb{C}}$ corresponds to the class $c \in H^{2}(X, \mathbb{Z})$ defined as $c=c_{1}\left(P_{U_{1}}\right)$; its called the canonical class of the $S^{1}{ }^{\mathbb{C}}{ }^{\mathbb{C}}$-structure.
2. If $T X$ carries a $S p i n^{\mathbb{C}}$-structure we say that X is a $S_{\text {Pin }}{ }^{\mathbb{C}}$-manifold.
3. As an obstruction, an interpretation to a Spin $^{\mathbb{C}}$-structures can be done in the same way as done to a S Sin-structure. A $S_{\text {Sin }}{ }^{\mathbb{C}}$-structure over an oriented vector bundle E is equivalent to a complex structure over the 2 -skeleton that can be extended over the 3 -skeleton. As a consequence, $W_{3}(E)=0 w_{3}=W_{3} \bmod 2$).

Example 1.7. .

1. Let (X, J) be a almost complex manifold, so $w_{2}(T X)=c_{1}(T X) \bmod 2$. Hence, (X, J) is a $\operatorname{Spin}^{\mathbb{C}}$-manifold. The representation $j: U_{n} \rightarrow \operatorname{Spin}_{2 n}^{c}$ induces the associated bundle

$$
P_{\text {Spin }}(T X)=P_{U_{n}} \times_{j} S_{p i n}^{2 n} c
$$

autor: Celso M Doria
which U_{1}-bundle is $P_{U_{1}}=P_{U_{n}} \times{ }_{\text {det }} U_{1}$ and whose $1^{\text {st }}$ Chern class is $c_{1}(X)$ because $c_{1}\left(\Lambda^{n} T X\right)=c_{1}(X)$.
2. In particular, if X is spin, then it is also a $S p i n{ }^{\mathbb{C}}$-manifold. In this case, there is the bundle $P_{\text {Spin }} \times P_{U_{1}}^{0}$ where $P_{U_{1}}^{0}$ is the trivial principal U_{1}-bundle over X. A Spin ${ }^{\mathbb{C}}$-structure on X is defined by taking bundle

$$
P_{\text {Spin }}{ }^{\mathbb{C}}=P_{\text {Spin }} \times_{\mathbb{Z}_{2}} P_{U_{1}}^{0} .
$$

Anothers S pin ${ }^{\mathbb{C}}$-structures can defined on X by replacing the bundle $P_{U_{1}}^{0}$ by $P_{U_{1}}^{\alpha}$, the frame bundle of the complex line bundle λ_{α}, where $c_{1}\left(\lambda_{\alpha}\right)=\alpha \in H^{2}(X, \mathbb{Z})$ satisfies the identity $w_{2}(X)=\alpha \bmod 2$. Thus, the new $\operatorname{Spin}^{\mathbb{C}}$-structure is

$$
\begin{equation*}
P_{\text {Spin }}{ }^{\mathbb{C}}=P_{S p i n} \times_{\mathbb{Z}_{2}} P_{U_{1}}^{\alpha}, \tag{1.4}
\end{equation*}
$$

and the principal U_{1}-bundle defining the $\operatorname{Spin}^{\mathbb{C}}$-structure is $P_{U_{1}}^{2 \alpha}$, where $P_{U_{1}}^{2 \alpha}=$ $P_{U_{1}}^{\alpha} / \mathbb{Z}_{2}$ is the square bundle ${ }^{3}$ of $P_{U_{1}}^{\alpha}$.

Let's examine the Spin ${ }^{\mathbb{C}}$-concept from the point of view of vector bundles. For this purpose we need to know what a Spin $^{\mathbb{C}}$-representation is;

Definition 1.16. Let X be a $\operatorname{Spin}^{\mathbb{C}}$-manifold of dimesion n. By a complex spinor bundle for X we mean a vector bundle S associated to a representation of $S p i n^{\mathbb{C}}$ by Clifford multiplication, i.e,

$$
S(X)=P_{S p i n}{ }^{\mathbb{C}}(X) \times_{\triangle} V,
$$

where V is a complex $C l_{n}$-module and $\triangle: S p i n^{\mathbb{C}} \rightarrow G L(V)$ is given by restriction of the $C l_{n}$-representation to $S p i n^{\mathbb{C}} \subset C l_{n} \otimes \mathbb{C}$. If the representation of $C l_{n}$ is irredutible, we say that S is fundamental.
remarks: As in the remark 1.2 there is only one fundamental spinor bundle $S(X)$ for any $\operatorname{Spin}^{\mathbb{C}}$-manifold X, since

1. when n is even, there exists only one fundamental representation $\triangle: \mathbb{C l}_{2 n} \rightarrow$ $G L(W)$ and W admits the decomposition $W=W^{+} \oplus W^{-}$, where $W^{ \pm}$are $\mathbb{C} l_{n^{-}}^{0}$ invariant representation spaces. Once $\operatorname{Spin}_{n} \subset \mathbb{C} l_{n}^{0}$, the representations $\triangle_{ \pm}$: $\operatorname{Spin}_{n} \subset \mathbb{C} l_{n}^{0} \rightarrow G L\left(W^{ \pm}\right)$are fundamental representation for $S p i n_{n}$, however, they are equivalents under \triangle-representation. The arguments extend to the spinor bundle

$$
S(X)=S^{+}(X) \oplus S^{-}(X)
$$

[^2]autor: Celso M Doria
2. when n is odd, there are two irredutible complex representations of $C l_{n}$. However, they are equivalent when restricted to $\operatorname{Spin}_{n} \subset \mathbb{C} l_{n}^{0}$.

Example 1.8. Let's return to the example of a spin manifold X. The $S p i{ }^{\text {C }}$-structure defined in ?? is equivalent to say that the complex spinor spinor bundle $S_{\alpha}(X)$ associated to the principal U_{1}-bundle $P_{U_{1}}^{\alpha}$ is

$$
S_{\alpha}=S_{0}(X) \otimes \lambda_{\alpha}
$$

where $\lambda_{2 \alpha}$ is square of the complex line bundle λ_{α} associated to $P_{U_{1}}^{\alpha}$, and so, $c_{1}\left(\lambda_{\alpha}\right)=\alpha$ and $c_{1}\left(\lambda_{\alpha}\right)=\alpha$. By the unicity of $S_{0}(X)$, it follows from ?? that the space $H^{2}(X, \mathbb{Z})$ acts on the space $\operatorname{Spin}^{\mathbb{C}}(X)$. Since the space of spin structures on X is $H^{1}\left(X, \mathbb{Z}_{2}\right)$, it follows that for a spin manifold

$$
\operatorname{Spin}^{c}(X)=\left\{\alpha+\beta \in H^{1}\left(X, \mathbb{Z}_{2}\right) \oplus H^{2}(X, \mathbb{Z}) \mid 0=\beta \bmod 2\right\}
$$

(observe that $\left.0=w_{2}=c_{1}\left(\lambda_{2 \alpha}\right)=2 \alpha \bmod 2\right)$

1.5.1 Local Description of a Fundamental Complex Spinor Bundle

As seen in the example 1.8, X being spin results that for each $\alpha \in H^{2}(X, \mathbb{Z})$ satisfying $w_{2}(X)=\alpha \bmod 2$, there is a complex spinor bundle $S_{\alpha}(X)=S_{0}(X) \otimes \lambda_{\alpha}$, where $S_{0}(X)$ is the fundamental spin bundle over X and λ_{α} is a complex line bundle over X with $c_{1}\left(\lambda_{\alpha}\right)=\alpha$. However, X not being spin implies that the bundle $S_{0}(X)$ doesn't exist. Let's see that, in the last case, the decomposition $S_{\alpha}(X)=S_{0}(X) \otimes \lambda_{\alpha}$ exists locally;

Proposition 1.17. The obstruction to the existence of $S_{0}(X)$ is equal to the obstruction to the existence of λ_{α}^{2}.

Demonstração. The existence of $S_{0}(X)$ is equivalent to the vanishing of the $2^{\text {nd }}$ StiefelWhitney class $w_{2}(X)$, as follows: the short exact sequence

$$
1 \longrightarrow \mathbb{Z}_{2} \longrightarrow \text { Spin }_{n} \longrightarrow S O_{n} \longrightarrow 1
$$

induces the exact sequence

$$
H^{1}\left(X, \mathbb{Z}_{2}\right) \longrightarrow H^{1}\left(X, \text { Spin }_{n}\right) \xrightarrow{\overline{A d}} H^{1}\left(X, S O_{n}\right) \xrightarrow{w_{2}(E)} H^{2}\left(X, \mathbb{Z}_{2}\right),
$$

Assuming that $w_{2}=c \bmod 2$, for some class $c \in H^{2}(X \mathbb{Z})$, we know that there is a Spin ${ }^{\mathbb{C}}$-structure on X, which $P_{U_{1}}$-bundle is the frame bundle of a complex line bundle λ_{c}. In order to analyse the existence of the square root bundle of λ_{c}, let's consider the short exact sequence

$$
1 \longrightarrow \mathbb{Z}_{2} \longrightarrow S^{1} \xrightarrow{\sigma} S^{1} \longrightarrow 1,
$$

where $\sigma(z)=z^{2}$. The sequence aboce induces the exact sequence

$$
\begin{equation*}
H^{1}\left(X, S^{1}\right) \xrightarrow{\sigma^{*}} H^{1}\left(X, S^{1}\right) \xrightarrow{w^{\prime}} H^{2}\left(X, \mathbb{Z}_{2}\right) . \tag{1.5}
\end{equation*}
$$

Let $\left\{U_{\nu}\right\}_{\nu \in \Lambda}$ be a covering of X such that the finite intersections $\cap_{i=1}^{m} U_{\nu_{i}},\left\{\nu_{i}\right\} \subset \Lambda$, is always contractible. Considering $\left\{\gamma_{\mu \nu} \mid \gamma_{\mu \nu}: U_{\mu} \cap U_{\nu} \rightarrow S^{1}\right.$, the transition functions of λ_{c}, the bundle $\lambda_{c}^{1 / 2}$ exists iff its transition functions $\left\{\widetilde{\gamma}_{\mu \nu}=\left(\gamma_{\mu \nu}\right)^{1 / 2}\right\}$ define a cocycle

$$
w^{\prime}\left(\left[\widetilde{\gamma}_{\mu \nu}\right]\right)=\widetilde{\gamma}_{\mu \nu} \widetilde{\gamma}_{\nu \eta} \widetilde{\gamma}_{\eta \mu}: U_{\mu} \cap U_{\nu} \cap U_{\eta} \rightarrow \mathbb{Z}_{2}=\operatorname{ker}\left(\sigma^{*}\right) .
$$

From the commutative diagram below

it is clear that the obstructions agree because $\left[w^{\prime}\left(\left[\gamma_{\mu \nu}\right]\right)=\rho\left(c_{1}\left(\lambda_{c}\right)\right)=\rho(c)=w_{2}\right.$. Therefore, since both bundles $S_{0}(X)$ and $\lambda_{c}^{1 / 2}$ exist locally, the computation above shows that their tensor product locally represent the $\operatorname{Spin}^{\mathbb{C}}$-vector bundle having $P_{U_{1}}$ bundle with Chern class $c_{1}\left(P_{U_{1}}\right)=\alpha$.

Corollary 1.7. The space of Spin^{c}-structures on a manifold X is

$$
\operatorname{Spin}^{c}(X)=\left\{\alpha+c \in H^{1}\left(X, \mathbb{Z}_{2}\right) \otimes H^{2}(X, \mathbb{Z}) \mid w_{2}(X)=c \bmod 2\right\}
$$

1.6 Cobordant Spin c-Structures

A Spin-structure on an orientable 4 -manifold X with boundary $Y=\partial X$ induces a Spin-structure on the boundary Y. In order to see this, we fix a local frame $\beta_{4}=$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on X, such that the frame $\beta_{3}=\left\{e_{1}, e_{2}, e_{3}\right\}$ defines an orientation on Y and e_{4} is orthogonal to Y. Thus, the Clifford Algebra isomorphism $C l_{3} \simeq C l_{4}^{0}$ is given by $e_{i} \rightarrow e_{1} . e_{4}, i=1,2,3$. We note that all 3 -manifolds are spin.

The n-manifolds X_{1} and X_{2} are said to be cobordant iff there exists a ($\mathrm{n}+1$)-manifold W such that $\partial W=X_{1} \cup X_{2}$. Cobordance defines an equivalent relation and so classes $[X]=\left\{X^{\prime} \mid X^{\prime}\right.$ is cobordant to $\left.X\right\}$. The set $\Omega_{n}=\{[X] \mid X$ a n-manifold $\}$ is a abelian group under the operation defined by connected sum. Taking in account a spin sctructure s on X, we can define the class $[(X, s)]$ to be set of spin n-manifolds $\left(X^{\prime}, s^{\prime}\right)$ such that X, X^{\prime} are cobordant $\left(X \cup X^{\prime}=\partial W\right)$ and s, s^{\prime} are also cobordants, where s is cobordant to s^{\prime} iff there exits a spin structure S on W such that $s=\left.S\right|_{X}$ and $s^{\prime}=\left.S\right|_{X^{\prime}}$. Analogously, there is the abelian group $\Omega_{n}^{\text {spin }}=\{[(X, s)] \mid X$ a n-manifold, s a spin structure on $X\}$. The table below shows the structure of the Cobordism groups;

n	$\Omega_{n}^{\text {spin }}$	$\Omega_{n}^{\text {so }}$	$\Omega_{n}^{\text {spin }^{\text {s. }}}$
0	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}$
1	\mathbb{Z}_{2}	0	\mathbb{Z}
2	\mathbb{Z}_{2}	0	$\mathbb{Z}_{2} \oplus \mathbb{Z}$
3	0	0	\mathbb{Z}
4	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}$

Capítulo 2

SW-Equations

2.1 Quadratic form

Let V be a complex vector space, V^{*} its dual and $\operatorname{End}(V)=\{T: V \rightarrow V \mid$ T is \mathbb{C}-linear. By fixing a frame $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ in V and the corresponding co-frame $\beta^{*}=\left\{e^{1}, \ldots, e^{n}\right\}$ in V^{*}, there is the isomorphism (.)*:V $\rightarrow V^{*}$ defined as the anti-linear extension of the map $\left(e_{i}\right)^{*}=e^{i}$; i.e,

$$
\left(\sum_{k} v^{k} e_{k}\right)^{*}=\sum_{k} \bar{v}^{k} e^{k}
$$

Proposition 2.1.

$$
\operatorname{End}(V)=V \otimes V^{*}
$$

Demonstração. Let $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ be a frame of V and $\beta^{*}=\left\{e^{1}, \ldots, e^{n}\right\}$ the co-frame associated to β. Let $T \in \operatorname{End}(V)$ and $v \in V$;

$$
T(v)=\sum_{k} v^{k} T\left(e_{k}\right)=\sum_{k} T\left(e_{k}\right) e^{k}(v)=\left(\sum_{k} T\left(e_{k}\right) e^{k}\right)(v)
$$

In this way, $T=\sum_{k} T\left(e_{k}\right) e^{k}$ motivates the definition of $B: V \otimes V^{*} \rightarrow \operatorname{End}(V)$ by

$$
B\left(v \otimes w^{*}\right)=\sum_{k} \sum_{l} v^{k} \bar{w}^{l} e_{k} \otimes e^{l}, \quad w^{*}=\sum_{l} \bar{w}_{l} e^{l} .
$$

Since $\left(e_{k} \otimes e^{l}\right)(u)=u^{l} e_{k}$, its associated matrix is $E_{k l}=\left(\delta_{k l}\right)$. Hence, the explicit formula of the isomorphism $B: V \otimes V^{*} \rightarrow \operatorname{End}(V)$, written in terms of the basis $\left\{E_{k l} \mid 1 \leq k, l \leq \operatorname{dim}_{\mathbb{C}}(V)\right\}$ of V, is

$$
\begin{equation*}
B\left(v \otimes w^{*}\right)=\sum_{k, l} v^{k} \bar{w}^{l} E_{k l} . \tag{2.1}
\end{equation*}
$$

Thus, the isomorphism $B: V \otimes V^{*} \rightarrow \operatorname{End}(V)$ is a hermitian bilinear form, which quadratic form is

$$
q_{B}(v)=v \otimes v^{*}=\sum_{k, l} v^{k} \bar{v}^{l} E_{k l} .
$$

For the purposes of defining later the $\mathcal{S W}$-equations, let $\operatorname{End}_{0}(V)=\{T \in \operatorname{End}(V) \mid$ $\operatorname{tr}(T)=0\}$ and $\sigma: V \rightarrow E n d^{0}(V)$ defined by

$$
\sigma(v)=v \otimes v^{*}-\frac{|v|^{2}}{2} I=\left(\begin{array}{cc}
\frac{\left|\phi_{1}\right|^{2}-\left|\phi_{2}\right|^{2}}{2} & \phi_{1} \bar{\phi}_{2} \tag{2.2}\\
\bar{\phi}_{1} \phi_{2} & \frac{\left|\phi_{2}\right|^{2}-\left|\phi_{2}\right|^{2}}{2}
\end{array}\right) .
$$

The bilinear form associated to σ is $\sigma: V \times V \rightarrow E n d^{0}(V)$,

$$
\begin{equation*}
\sigma(v, w)=\frac{1}{2}\left\{v \otimes w^{*}+w \otimes v^{*}-\operatorname{Re}\{<v, w>\} I\right\} . \tag{2.3}
\end{equation*}
$$

It follows from the defintion that

$$
\begin{equation*}
\sigma(v+w)=\sigma(v)+\sigma(w)+2 \sigma(v, w) . \tag{2.4}
\end{equation*}
$$

Proposition 2.2. If $T \in \mathfrak{s u}_{2}=\left\{A \in M_{2}(\mathbb{C}) \mid A^{*}=-A, \operatorname{tr}(A)=0\right\}$ and $v, w \in V$, then

1. $\langle T(v), v\rangle=2<\sigma(v), T\rangle$.
2. $i \operatorname{Im}\{<T(v), w>\}=<\sigma(v, w), T>$.
3. $\sigma(v) \cdot v=-\frac{|v|^{2}}{2} v$.
4. $\sigma(T(v), w)+\sigma(v, T(w))=-\operatorname{Re}(\langle v, w\rangle) T$.
5. $\sigma(v, w)=0$ iff $w=i \lambda v$ for some $\lambda \in \mathbb{R}$.

Demonstração. .

1. $\langle T(v), v\rangle=2<\sigma(v), T\rangle ;$
(a) $\langle T(v), v\rangle=\sum_{i, j} v_{i} \bar{v}_{j} t_{j i}$.
(b) $\langle\sigma(v), T\rangle$;

Since $\langle\sigma(v), T\rangle=\frac{1}{2} \operatorname{tr}\left[\sigma(v)^{*} \cdot T\right]$, let's compute $\sigma(v)^{*} \cdot T$;

$$
\sigma(v)=\sum_{i, j} v_{i} \bar{v}_{j} E_{i j}-\sum_{i} \frac{|v|^{2}}{2} E_{i i} \Rightarrow \sigma(v)^{*}=\sum_{i, j} \bar{v}_{i} v_{j} E_{j i}-\sum_{i} \frac{|v|^{2}}{2} E_{i i} .
$$

$$
\begin{aligned}
& \sigma(v)^{*} \cdot T=\left\{\sum_{i, j} \bar{v}_{i} v_{j} E_{j i}-\sum_{i} \frac{|v|^{2}}{2} E_{i i}\right\} \cdot\left\{\sum_{k, l} t_{k l} E_{k l}\right\}= \\
& =\sum_{i, j} \sum_{k, l} \bar{v}_{i} v_{j} t_{k l} E_{j i} E_{k l}-\sum_{i} \sum_{k, l} t_{k l} \frac{|v|^{2}}{2} E_{i i} E_{k l}= \\
& =\sum_{i, j} \sum_{k, l} \bar{v}_{i} v_{j} t_{k l} E_{j l} \delta_{i k}-\sum_{i} \sum_{k, l} t_{k l} \frac{|v|^{2}}{2} E_{i l} \delta_{i k}= \\
& =\sum_{i, j} \sum_{l} \bar{v}_{i} v_{j} t_{i l} E_{j l}-\sum_{i} \sum_{l} t_{i l} \frac{|v|^{2}}{2} E_{i l}
\end{aligned}
$$

So,

$$
\begin{aligned}
\operatorname{tr}\left(\sigma(v)^{*} \cdot T\right) & =\sum_{i, j} \sum_{l} \bar{v}_{i} v_{j} t_{i l} \delta_{j l}-\sum_{i} \sum_{l} t_{i l} \frac{|v|^{2}}{2} \delta_{i l}= \\
& =\sum_{i, j} \bar{v}_{i} v_{j} t_{i j}-\sum_{i} t_{i i} \frac{|v|^{2}}{2}=\sum_{i, j} \bar{v}_{i} v_{j} t_{i j}-\frac{|v|^{2}}{2} \cdot \operatorname{tr}(T) .
\end{aligned}
$$

Once $T \in \mathfrak{s u}_{2}, \operatorname{tr}(T)=0$, therefore the expressions for $\langle T(v), v\rangle$ and $2<\sigma(v), T>$ are equal.
2. From the identities

$$
\begin{aligned}
<T(v+w), v+w> & =<T(v), v>+<T(w), w>+2 i \operatorname{Im}\{<T(v), w>\} \\
\sigma(v+w) & =\sigma(v)+\sigma(w)+v \otimes w^{*}+w \otimes v^{*}-\operatorname{Re}\{<v, w>\}
\end{aligned}
$$

it follows that $i \operatorname{Im}\{\langle T(v), w\rangle\}=<\sigma(v, w), T>$.
3. the other itens are proved by straight computations using the explicit isomorphism in 2.1.

2.2 The Quadratic Forms $\sigma_{3}: \mathbb{C}^{2} \rightarrow \Lambda^{1} \mathbb{R}^{3}$ and $\sigma_{4}: \mathbb{C}^{2} \rightarrow \Lambda_{+}^{2} \mathbb{R}^{4}$

From the classification of Clifford Algebras, we know that $C l_{3}=\mathbb{H} \oplus \mathbb{H}$ and, because $\mathbb{H} \otimes \mathbb{C}=M_{2}(\mathbb{C})$, it follows that $\mathbb{C} l_{3}=M(2, \mathbb{C}) \oplus M(2, \mathbb{C})$, where $\mathbb{C} l_{3}^{ \pm}=M(2, \mathbb{C})$. Therefore, there are two inequivalent $\mathbb{C} l_{3}$ representations $\rho_{ \pm}: \mathbb{C} l_{3} \rightarrow M_{2}(\mathbb{C})$, each one characterized by the fact that $\rho_{ \pm}(w)= \pm I$. The quadratic forms $\sigma_{3}: \mathbb{C}^{2} \rightarrow \Lambda^{1} \mathbb{R}^{3}$ and $\sigma_{4}: \mathbb{C}^{2} \rightarrow \Lambda_{+}^{2} \mathbb{R}^{4}$ are defined by describing explicitly the representation ρ_{+}, as shown in the follwing steps;
step 1: $\quad C l_{3} \simeq \mathbb{H} \oplus \mathbb{H}$
In terms of its generators, $C_{3}^{ \pm} \simeq \mathbb{H}$ is described as follows: let $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ be a frame in $\mathbb{R}^{3}, \pi_{+}: C l_{3} \rightarrow C l_{3}^{+}$and $w=e_{1} e_{2} e_{3}$;

$$
\begin{aligned}
& \eta_{1}=\pi_{+}\left(e_{1}\right)=\frac{e_{1}-e_{2} e_{3}}{2}, \quad \eta_{2}=\pi_{+}\left(e_{2}\right)=\frac{e_{2}+e_{1} e_{3}}{2}, \\
& \eta_{3}=\pi_{+}\left(e_{3}\right)=\frac{e_{3}-e_{1} e_{2}}{2}
\end{aligned}
$$

Thus, $<\frac{1+w}{2}, \eta_{1}, \eta_{2}, \eta_{3}>$ is a basis for $C l_{3}^{+}$. Due to the relations

$$
\eta_{1} \eta_{2}=-\eta_{3}, \quad \eta_{2} \eta_{3}=-\eta_{1}, \quad \eta_{3} \eta_{1}=-\eta_{2},
$$

the identification $\eta_{1} \mapsto i, \eta_{2} \mapsto j$ and $\eta_{3} \mapsto-k$ is performed and extended linearly to define the isomorphism $\mathrm{Cl}_{3}^{+} \simeq \mathbb{H}$. The volume form $w_{\mathbb{C}}$ in the complex case of $\mathbb{C l}_{3}$ satisfies the identity $w_{\mathbb{C}}=-w$, as shown in equation 2 . Therefore, the set $\left\{\frac{1-w}{2}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right\}$ is a basis of $\mathbb{C} l_{3}^{+}$, where

$$
\begin{aligned}
& \zeta_{1}=\frac{e_{1}+e_{2} e_{3}}{2}, \quad \zeta_{2}=\frac{e_{2}-e_{1} e_{3}}{2}, \quad \zeta_{3}=\frac{e_{3}+e_{1} e_{2}}{2}, \\
& \zeta_{1} \zeta_{2}=-\zeta_{3}, \quad \zeta_{2} \zeta_{3}=-\zeta_{1}, \quad \zeta_{3} \zeta_{1}=-\zeta_{2} .
\end{aligned}
$$

step 2: $\mathbb{H} \hookrightarrow M(2, \mathbb{C})$
There is the mononorphism

$$
a+b j \rightarrow\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) .
$$

sitting the quaternions within $M(2, \mathbb{C})$.
step 3: $\mathbb{C} l_{3}=M_{2}(\mathbb{C}) \oplus M_{2}(\mathbb{C})$

$$
C l_{3} \otimes \mathbb{C} \simeq(\mathbb{H} \oplus \mathbb{H}) \otimes \mathbb{C}=(\mathbb{H} \otimes \mathbb{C}) \oplus(\mathbb{H} \otimes \mathbb{C})
$$

and $\mathbb{H} \otimes \mathbb{C}=M_{2}(\mathbb{C})$. The generatros of $\mathbb{C} l_{3}^{+}$are

$$
\begin{align*}
& \frac{1+w_{\mathbb{C}}}{2} \longmapsto 1 \longmapsto\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \tag{2.1}\\
& \zeta_{1} \longmapsto i \longmapsto\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \tag{2.2}\\
& \zeta_{2} \longmapsto j \longmapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \tag{2.3}\\
& \zeta_{3} \longmapsto-k \longmapsto\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right), \tag{2.4}
\end{align*}
$$

step 4: $\rho_{+}: \mathbb{C} l_{3} \rightarrow M_{2}(\mathbb{C})$:
Considering the vector space isomorphism $\mathbb{C} l_{3} \simeq \Lambda^{*} \mathbb{R}^{3} \otimes \mathbb{C}$, the representation $\rho_{+}: \mathbb{C} l_{3} \rightarrow M_{2}(\mathbb{C})$ induces $\rho_{+}: \Lambda^{*} \mathbb{R}^{3} \rightarrow M_{2}(\mathbb{C})$. In order to represent the former isomorphism, let $\beta^{*}=\left\{e^{1}, e^{2}, e^{3}\right\}$ be a co-frame of $\left(\mathbb{R}^{3}\right)^{*}$, and

$$
\rho_{+}\left(e^{1}\right)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad \rho_{+}\left(e^{2}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \rho_{+}\left(e^{3}\right)=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) .
$$

Thus, once $\mathfrak{s u}_{2}=\left\{A \in M_{2}(\mathbb{C}) \mid A^{*}=-A, \operatorname{tr}(A)=0\right\}$, there is the vector space isomorphism

$$
\rho_{+}:\left(\mathbb{R}^{3}\right)^{*} \rightarrow \mathfrak{s u}_{2}, \quad \rho_{+}\left(a_{1} e^{1}+a_{2} e^{2}+a_{3} e^{3}\right)=\left(\begin{array}{cc}
-i a_{3} & a_{2}+i a_{1} \tag{2.5}\\
-a_{2}+i a_{1} & i a_{3}
\end{array}\right) .
$$

Since $E n d_{0}\left(\mathbb{C}^{2}\right)=\mathfrak{s u}{ }_{2} \otimes \mathbb{C}$ as a \mathbb{C}-linear space, there is the natural extension $\rho_{+}: \Lambda^{1} \mathbb{R}^{3} \otimes \mathbb{C} \rightarrow \operatorname{End}_{0}\left(\mathbb{C}^{2}\right)$. Its inverse is $\rho_{+}^{-1}: \operatorname{End}_{0}\left(\mathbb{C}^{2}\right) \rightarrow \Lambda^{1} \mathbb{R}^{3} \otimes \mathbb{C}$,

$$
\rho_{+}^{-1}\left(\left(\begin{array}{cc}
\alpha & z \tag{2.6}\\
w & -\alpha
\end{array}\right)\right)=\frac{1}{2 i}(z+w) e^{1}+\frac{1}{2}(z-w) e^{2}-\frac{1}{i} \alpha e^{3} .
$$

Besides, ρ_{+}is an isometry.
step 5: definition of σ_{3}

Definition 2.1. The 3-dimensional $\mathcal{S W}$-quadratic form $\sigma_{3}: \mathbb{C}^{2} \rightarrow \Lambda^{1} \mathbb{R}^{3} \oplus \mathbb{C}$ is

$$
\begin{equation*}
\sigma_{3}(v)=\rho_{+}^{-1}(\sigma(v)) \tag{2.7}
\end{equation*}
$$

Proposition 2.3.

$$
\begin{equation*}
\sigma_{3}(v)=-\frac{1}{2} \sum_{i=1}^{3}<e_{i} \cdot v, v>e^{i} \tag{2.8}
\end{equation*}
$$

Demonstração. In equation 2.6, consider $v=\left(v_{1}, v_{2}\right) \in \mathbb{C}^{2}, z=v_{1} \bar{v}_{2}, w=\bar{z}$ and $\alpha=\left|v_{1}\right|^{2}-\left|v_{2}\right|^{2}$, so

$$
\rho_{+}^{-1}\left(\left(\begin{array}{cc}
\alpha & v_{1} \bar{v}_{2} \tag{2.9}\\
v_{2} \bar{v}_{1} & -\alpha
\end{array}\right)\right)=i\left(-\operatorname{Re}\left(v_{1} \bar{v}_{2}\right) e^{1}+\operatorname{Im}\left(v_{1} \bar{v}_{2}\right) e^{2}+\alpha e^{3}\right) .
$$

Therefore, the identity 2.12 follows from the identities below:
autor: Celso M Doria

$$
\begin{aligned}
& <e_{1} \cdot v, v>=-2 i \operatorname{Im}\left(v_{1} \bar{v}_{2}\right), \quad<e_{2} \cdot v, v>=2 i \operatorname{Re}\left(v_{1} \bar{v}_{2}\right), \\
& <e_{3} \cdot v, v>=i\left(\left|v_{1}\right|^{2}-\left|v_{2}\right|^{2}\right) .
\end{aligned}
$$

step 6: definition of σ_{4}
It was proved in ?? that $\left.\left(\mathbb{C} l_{4}^{0}\right)^{+} \simeq\left(<\frac{1+w}{2}\right\rangle \oplus \Lambda_{2}^{+} \mathbb{R}^{4}\right) \otimes \mathbb{C}$. Moreover,

1. $\mathbb{C} l_{4}^{0} \simeq \mathbb{C l} l_{3}$ and so $\left(\mathbb{C} l_{4}^{0}\right)^{+} \simeq \mathbb{C} l_{3}^{+} \simeq M_{2}(\mathbb{C})$
2. $E n d_{0}\left(\mathbb{C}^{2}\right)=\Lambda_{+}^{2} \mathbb{R}^{4} \otimes \mathbb{C}$.

In order to explicit the isomorphism above, let $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ be a frame in \mathbb{R}^{4};
(a) the isomorphism $f: \mathbb{C} l_{3} \rightarrow \mathbb{C} l_{4}^{0}$ is given by $f\left(e_{i}\right)=e_{i} e_{4}$. Therefore $f\left(e_{1} e_{2} e_{3}\right)=e_{1} e_{2} e_{3} e_{4}, f\left(\mathbb{C} l_{3}^{+}\right)=\left(\mathbb{C} l_{4}^{0}\right)^{+}$and

$$
\begin{aligned}
& \widetilde{\zeta}_{1}=f\left(\zeta_{1}\right)=\frac{e_{1} e_{4}+e_{2} e_{3}}{2}, \quad \widetilde{\zeta}_{2}=f\left(\zeta_{2}\right)=\frac{e_{2} e_{4}-e_{1} e_{3}}{2}, \\
& \widetilde{\zeta}_{3}=f\left(\zeta_{3}\right)=\frac{e_{3} e_{4}+e_{1} e_{2}}{2},
\end{aligned}
$$

The volume in $\mathbb{C} l_{4}$ is $w=-e_{1} e_{2} e_{3} e_{4}$ and a basis for $\left(\mathbb{C l} l_{4}^{0}\right)^{+}$is given by $<\frac{1-w}{2}, \widetilde{\zeta}_{1}, \widetilde{\zeta}_{2}, \widetilde{\zeta}_{3}>$.
(b) Let $\beta^{*}=\left\{e^{1}, e^{2}, e^{3}, e^{4}\right\}$ be a co-frame in $\left(\mathbb{R}^{4}\right)^{*}$. The set $\left\{\widetilde{\zeta}_{1}, \widetilde{\zeta}_{2}, \widetilde{\zeta}_{3}\right\}$ form a basis for $\Lambda_{+}^{2} \mathbb{R}^{4}$.
3. All the isomorphisms described so far define, through the sequence below, the isomorphism $\delta: \Lambda_{+}^{2} \mathbb{R}^{4} \otimes \mathbb{C} \rightarrow \operatorname{End}_{0}\left(\mathbb{C}^{2}\right)$,

$$
\begin{equation*}
\left(<\frac{1-w}{2}>\oplus \Lambda_{+}^{2} \mathbb{R}^{4}\right) \otimes \mathbb{C} \simeq\left(\mathbb{C} l_{4}^{0}\right)^{+} \simeq \mathbb{C} l_{3}^{+} \stackrel{\rho_{+}}{\simeq} M_{2}(\mathbb{C}) \simeq<I>\oplus \operatorname{End}_{0}\left(\mathbb{C}^{2}\right) . \tag{2.10}
\end{equation*}
$$

Definition 2.2. The 4 -dimensional $\mathcal{S W}$-quadratic form $\sigma_{4}: \mathbb{C}^{2} \rightarrow \Lambda_{+}^{2} \mathbb{R}^{4} \oplus \mathbb{C}$ is

$$
\begin{equation*}
\sigma_{4}(v)=\delta^{-1}(\sigma(v)) \tag{2.11}
\end{equation*}
$$

Proposition 2.4.

$$
\begin{equation*}
\sigma_{4}(v)=-\frac{1}{2} \sum_{i=1}^{3}<\widetilde{\zeta}_{i} \cdot v, v>\widetilde{\zeta}^{i} . \tag{2.12}
\end{equation*}
$$

autor: Celso M Doria

2.3 $S W$-Equations on a 3-Manifold Y

A Spin^{c} structure on Y is a class $\mathfrak{s}(\alpha)=\mathfrak{s}+\alpha \in H^{1}\left(X, \mathbb{Z}_{2}\right) \oplus H^{2}(X, \mathbb{Z})$ such that $\alpha=0 \bmod 2$. For each class $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{\mathbb{C}}(X)$ there is a principal bundle $P_{\text {Spin }}(X)$ as in definition 1.15. Since $\operatorname{Spin}_{3}^{\mathbb{C}}=S^{3} \times_{\mathbb{Z}_{2}} S^{1}=U_{2}$, for each class $\mathfrak{s}(\alpha)$ it is associated the following vector bundles;

1. the complex spinor bundle

$$
S_{\mathfrak{s}(\alpha)}=P_{S p i n_{3}^{\mathbb{C}}}(X) \times_{\triangle} \mathbb{C}^{2}
$$

where $\triangle: S p i n{ }_{3}^{\mathbb{C}} \rightarrow U_{2}$ is induced by the isomorphism $\mathbb{C l} l_{3}^{0}=C l_{3}^{0} \otimes \mathbb{C} \simeq M_{2}(\mathbb{C})$.
2. The determinant line bundle

$$
L_{\alpha}=P_{\text {Spin }}{ }^{\mathbb{C}} \times_{\text {det }} \mathbb{C}
$$

where det : $U_{2} \rightarrow \mathbb{C}$ and $c_{1}\left(L_{\alpha}\right)=\alpha$.
Definition 2.3. On Y, the configuration space for the Seiberg-Witten Theory is $\mathcal{C}_{\mathfrak{s}(\alpha)}=$ $\mathcal{A}_{\alpha} \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$, where \mathcal{A}_{α} is the space of U_{1}-connections defined on L_{α} and $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ is the space of sections of $S_{\mathfrak{s}(\alpha)}$. The Seiberg-Witten map is

$$
\begin{align*}
\mathcal{F}_{\mathfrak{s}(\alpha)}: \mathcal{C}_{\mathfrak{s}(\alpha)} & \rightarrow \Omega^{1}(X, i \mathbb{R}) \times \Gamma\left(S_{\mathfrak{s}(\alpha)}\right) \tag{2.1}\\
(A, \phi) & \longmapsto\left(* F_{A}-\sigma_{3}(\phi), D_{A}(\phi)\right) \tag{2.2}
\end{align*}
$$

The abelian gauge group $\mathcal{G}_{\mathfrak{s}(\alpha)}=\operatorname{Map}\left(Y, U_{1}\right)$ acts on $\mathcal{C}_{\mathfrak{s}(\alpha)}$ through the action

$$
\mathcal{G}_{\mathfrak{s}(\alpha)} \times \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow \mathcal{C}_{\mathfrak{s}(\alpha)}, \quad g \cdot(A, \phi)=\left(A+2 g^{-1} d g, g^{-1} \phi\right) .
$$

The fixed points of the $\mathcal{G}_{\mathfrak{s}(\alpha)}$-action are $(A, 0), \forall A \in \mathcal{A}_{\alpha}$, which isotropy groups $G_{(A, 0)}$ are isomorphic to $U_{1}=\left\{g \in \mathcal{G}_{\mathfrak{s}(\alpha)} \mid g(y)=\right.$ const $\}$. Thus, the space $\mathcal{B}_{\mathfrak{s}(\alpha)}=\mathcal{C}_{\mathfrak{s}(\alpha)} / \mathcal{G}_{\mathfrak{s}(\alpha)}$ is a singular space. Instead, if the action is restricted to the free action of the group $\mathcal{G}_{\mathfrak{s}(\alpha)}^{0}=\left\{g \in \mathcal{G}_{\mathfrak{s}(\alpha)} \mid g\left(y_{0}\right)=I\right\}$, then the orbit space $\mathcal{B}_{\mathfrak{s}(\alpha)}^{0}=\mathcal{C}_{\mathfrak{s}(\alpha)} / \mathcal{G}_{\mathfrak{s}(\alpha)}^{0}$ is a manifold. The group $\mathcal{G}_{\mathfrak{s}(\alpha)}^{0}$ fits into the short exact sequence

$$
1 \longrightarrow \mathcal{G}_{\mathfrak{s}(\alpha)}^{0} \longrightarrow \mathcal{G}_{\mathfrak{s}(\alpha)} \xrightarrow{e_{0}} U_{1} \longrightarrow 1, \quad e_{0}(g)=g\left(y_{0}\right) .
$$

So far, due to the action, there are two categories of points to be considered in $\mathcal{C}_{\mathfrak{s}(\alpha)}:$ (1) the reducibles $(A, 0) \in \mathcal{C}_{\mathfrak{s}(\alpha)}$ such that $G_{(A, 0)} \simeq U_{1}$ and (2) the irreducibles $(A, \phi) \in \mathcal{C}_{\mathfrak{s}(\alpha)}$ such that $G_{(A, \phi)}=\{I\}$. Thus, an important space to be considered is the space of irreducibles

$$
\mathcal{C}_{\mathfrak{s}(\alpha)}^{*}=\left\{(A, \phi) \in \mathcal{C}_{\mathfrak{s}(\alpha)} \mid G_{(A, \phi)}=\{I\}\right\}, \mathcal{B}_{\mathfrak{s}(\alpha)}^{*} / \mathcal{G}_{\mathfrak{s}(\alpha)} .
$$

In fact, the projection $\mathcal{C}_{\mathfrak{s}(\alpha)}^{*} \rightarrow \mathcal{B}_{\mathfrak{s}(\alpha)}^{*}$ defines an universal $\mathcal{G}_{\mathfrak{s}(\alpha)}$-principal bundle because the $\mathcal{G}_{\mathfrak{s}(\alpha)}$-action is free on the contractible space $\mathcal{C}_{\mathfrak{s}(\alpha)}^{*}$ (it is homotopic to the space $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \backslash\{0\}$, and the former space has the homotopy type of $\left.S^{\infty}\right)$. Also, there is the principal U_{1}-bundle $\mathfrak{b}: \mathcal{B}_{\mathfrak{s}(\alpha)}^{0} \rightarrow \mathcal{B}_{\mathfrak{s}(\alpha)}^{*}$.

The map $\mathcal{F}_{\mathfrak{s}(\alpha)}$ is $\mathcal{G}_{\mathfrak{s}(\alpha)}$-equivariant because

$$
* F_{g(A)}-\sigma_{3}\left(g^{-1} \phi\right)=* F_{A}-\sigma_{3}(\phi) \quad \text { and } \quad D_{g(A)}\left(g^{-1} \phi\right)=g^{-1} D_{A} \phi .
$$

Hence, $\mathcal{F}_{\mathfrak{s}(\alpha)}(g .(A, \phi))=g . \mathcal{F}_{\mathfrak{s}(\alpha)}$. In this way, the Seiberg-Witten map defines a section $\mathcal{F}_{\mathfrak{s}(\alpha)}: \mathcal{B}_{\mathfrak{s}(\alpha)}^{*} \rightarrow \mathcal{E}_{\mathfrak{s}(\alpha)}$ of the associated vector bundle

$$
\mathcal{E}_{\mathfrak{s}(\alpha)}=\mathcal{C}_{\mathfrak{s}(\alpha)}^{*} \times \times_{\mathcal{G}_{\mathfrak{s}(\alpha)}}\left(\Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right) .
$$

By analogy with the finite dimensional case, the euler-class of $\mathcal{E}_{\mathfrak{s}(\alpha)}$ can be measured by the intersection number of $\mathcal{F}_{\mathfrak{s}(\alpha)}^{-1}(0)$ with the 0 -section. However, it is not at all clear how one can define in general the euler class of an infinite dimensional vector bundle.

Definition 2.4. The Seiberg-Witten equation are

$$
\left\{\begin{array}{l}
* F_{A}=\sigma_{3}(\phi), \tag{2.3}\\
D_{A} \phi=0 .
\end{array} \Leftrightarrow \quad \mathcal{F}_{\mathfrak{s}(\alpha)}(A, \phi)=0\right.
$$

The structure of the space of solutions to the $\mathcal{S W}$-equations is the main issue in this notes. As observed before, these equations are $\mathcal{G}_{\mathfrak{s}(\alpha) \text {-invariant. A technical point to be }}$ overcome is the existence of reducible solutions. The reducible solutions are all of type $(A, 0)$, otherwise $(\phi \neq 0)$ they are irreducible. Note that if $(A, 0)$ is a reducible solution, then $F_{A}=0$ and the bundle \mathcal{L}_{α} is trivial since its $1^{s t}$-Chern class is $c_{1}\left(\mathcal{L}_{\alpha}\right)=\frac{1}{2 \pi i} F_{A}$.

Proposition 2.5. The space of reducible solutions is diffeomorphic to the Jacobian Torus

$$
\begin{equation*}
T^{b_{1}(Y)}=\frac{H^{1}(Y, \mathbb{R})}{H^{1}(Y, \mathbb{Z})} \in \mathcal{A}_{\alpha} \times_{\mathcal{G}_{\alpha}} \Gamma\left(S_{\alpha}^{+}\right) \tag{2.4}
\end{equation*}
$$

Demonstração. Let $(A, 0)$ and $(B, 0)$ be reducible solutions. Consider $b \in \Omega^{1}(Y, i \mathbb{R})$ such that $B=A+b$. A, B being flat connections imply that $d b=0$ and so $b \in H^{1}(Y, \mathbb{R})$. If A and B are gauge equivalent, then $b=2 g^{-1} d g$ and $b \in H^{1}(Y, \mathbb{Z})$ because $b([\gamma])=$ $\int_{\gamma} g^{-1} d g \in \mathbb{Z}$, for all $[\gamma] \in H_{1}(Y, \mathbb{R})$. So, the map $[(a, 0)] \rightarrow[a] \in T^{b_{1}(Y)}$ defines the diffeomorphism.

Definition 2.5. The $\mathcal{S} \mathcal{W}_{\mathfrak{s}(\alpha)}$-monopole space associated to the Spin $^{\mathbb{C}}$ structure $\mathfrak{s}(\alpha) \in$ $\operatorname{Spin}^{\mathbb{C}}(Y)$ is the space

$$
\mathcal{M}_{\mathfrak{s}(\alpha)}=\left\{(A, \phi) \in \mathcal{C}_{\mathfrak{s}(\alpha)} \mid \mathcal{F}_{\mathfrak{s}(\alpha)}(A, \phi)=0\right\} / \mathcal{G}_{\mathfrak{s}(\alpha)} .
$$

As it well be clear along the notes, is the amazingly rich topological structure of $\mathcal{M}_{\mathfrak{s}(\alpha)}$ which allows the many applications. The backbone of all this is the following estimates;

Lemma 2.1. Let $k_{g}: Y \rightarrow \mathbb{R}$ be the scalar curvature function of (Y, g) and $k_{g}=$ $\max _{y \in Y} k_{g}(y)$. If $(A, \phi) \in \mathcal{M}_{\mathfrak{s}(\alpha)}$, then

$$
\begin{equation*}
\|\phi\|_{0} \leq \max \left\{0,-k_{g}\right\} \tag{2.5}
\end{equation*}
$$

Proposition 2.6. The irreducible solutions exist only for a finite number of classes $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{\mathbb{C}}(X)$.

Demonstração. Let (A, ϕ) be an irreducible monopole solution, so the norm of $\frac{1}{2 \pi i} F_{A}$ is bounded in $H^{2}(Y, \mathbb{R})$ and, consequently, $\alpha=\frac{1}{2 \pi i} F_{A}$ lies inside of the finite set $H^{1}(Y, \mathbb{Z}) \cap$ $H^{1}(Y, \mathbb{R})$. Hence, there exists irreducible monopole solutions only for a finite number of $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{\mathbb{C}}(X)$.

One of the very surprising and useful fact about the topological structure of $\mathcal{M}_{\mathfrak{s}(\alpha)}$ is its compactness;

Theorem 2.1. $\mathcal{M}_{\mathfrak{5}(\alpha)}$ is a compact set.
Originally, the $\mathcal{S W}$-equations were not of calculus of variation nature. It is remarkable that there exists a variational formulation for them, as it is shown next. Before procceding to a variational setting, let's stabilish the Sobolev structure on the spaces $\mathcal{C}_{\mathfrak{s}(\alpha)}$ and $\mathcal{G}_{\mathfrak{s}(\alpha)}$. First of all, by fixing a connection $A_{0} \in \mathcal{A}_{\alpha}$, the space \mathcal{A}_{α} becames a vector space isomorphic to $\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)=\Omega^{1}(Y, i \mathbb{R})$ and inheritages the metric structure;

1. $\mathcal{A}_{\alpha}=L^{1,2}\left(\mathcal{A}_{\alpha}\right), \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)=L^{1,2}\left(\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right)$ and $\mathcal{C}_{\mathfrak{s}(\alpha)}=\mathcal{A}_{\alpha} \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$. The metric on \mathcal{A}_{α} is induced by the inner product on $\Omega^{1}(Y, \mathbb{R})$. The inner product on $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ is defined by using the hermitian form on $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ and integrating its real part;

$$
\begin{equation*}
<\phi, \psi>=\int_{Y} \mathfrak{R e}(<\phi, \psi>) . \tag{2.6}
\end{equation*}
$$

2. $\mathcal{G}_{\mathfrak{s}(\alpha)}=L^{2,2}\left(\mathcal{G}_{\mathfrak{s}(\alpha)}\right)$.
3. the tangent space of $\mathcal{C}_{\mathfrak{s}(\alpha)}$ at (A, ϕ) is

$$
\begin{equation*}
T_{(A, \phi)} \mathcal{C}_{\mathfrak{s}(\alpha)}=\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \tag{2.7}
\end{equation*}
$$

4. For the purpose of deducting the $\mathcal{S W}$-equations as the Euler-Lagrange equations of a functional, the Hilbert structure to be considered on the bundle $T \mathcal{C}_{\mathfrak{s}(\alpha)}$ is

$$
<\theta+V, \Lambda+W>=\int_{Y}<\theta, \Lambda>d v_{g}+\int_{Y} \mathfrak{R e}(<V, W>) d v_{g} .
$$

Remark 1. The Hodge star operator $\hat{*}: \Omega^{p}(Y, i \mathbb{R}) \rightarrow \Omega^{3-p}(Y, i \mathbb{R})$ satisfies the following properties;

1. Let $*: \Omega^{p}(Y, \mathbb{R}) \rightarrow \Omega^{3-p}(Y, \mathbb{R})$ be the usual Hodge star operator and $\hat{*}=-*$: $\Omega^{p}(Y, i \mathbb{R}) \rightarrow \Omega^{3-p}(Y, i \mathbb{R})$. Consider $\widetilde{\omega}=i \omega, \widetilde{\eta}=i \eta \in \Omega^{1}(Y, i \mathbb{R})=\Omega^{1}(Y) \otimes i$, so

$$
\begin{equation*}
\widetilde{\omega} \wedge \hat{*} \widetilde{\eta}=(i \omega) \wedge \hat{*}(i \eta)=\omega \wedge(-\hat{*} \eta)=\omega \wedge * \eta=<\omega, \eta>d v_{g} . \tag{2.8}
\end{equation*}
$$

2. Besides, from the computation above, it follows that

$$
\begin{equation*}
\widetilde{\omega} \wedge \hat{*} \widetilde{\eta}=<\widetilde{\omega}, \widetilde{\eta}>d v_{g} . \tag{2.9}
\end{equation*}
$$

3. $\hat{\star}^{2}=*^{2}=(-1)^{p(3-p)}$.
4. The adjoint operator $d^{*}: \Omega^{p}(Y, i \mathbb{R}) \rightarrow \Omega^{p-1}(Y, i \mathbb{R})$ associated to the exterior derivative $d: \Omega^{p-1}(Y, i \mathbb{R}) \rightarrow \Omega^{p}(Y, i \mathbb{R})$, by the riemannian metric g on Y, is

$$
\begin{equation*}
d^{*}=(-1)^{3 p} \hat{*} d \hat{*}=(-1)^{3 p} * d * . \tag{2.10}
\end{equation*}
$$

Definition 2.6. The Chern-Simons-Dirac functional $\Upsilon: \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow \mathbb{R}$ is

$$
\Upsilon(A, \phi)=\int_{Y}\left\{\frac{1}{2}\left(A-A_{0}\right) \wedge\left(F_{A}+F_{0}\right)+<D_{A} \phi, \phi>\right\} d x
$$

where $A_{0} \in \mathcal{A}_{\alpha}$ is a fixed connection and $F_{0}=F_{A_{0}}$.
In case we consider another fixed connection A_{1}, the difference among the functionals is a constant term, and so the fixed connection is irrelevant for the theory.

Before going further to obtain the Euler-Lagrange equations of the functional Υ, let's prove an identity which is important to perform many computations;

Lemma 2.2. The L^{2}-adjoint of the linear operator $T_{\phi}: \Omega^{1}(Y, i \mathbb{R}) \rightarrow \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$, $T_{\phi}(\theta)=\frac{1}{2} \theta \bullet \phi$, is $T_{\phi}^{*}: \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Omega^{1}(Y, i \mathbb{R})$, where

$$
\begin{equation*}
T_{\phi}^{*}(W)=\sigma(\phi, W) . \tag{2.11}
\end{equation*}
$$

autor: Celso M Doria

Demonstração. The prove is divided into two steps which main issue is to prove the identity

$$
\int_{Y} R e\left(<\frac{1}{2} \theta \bullet \phi, W>\right) d v=\int_{Y}<\theta, \sigma(\phi, W)>d v
$$

step 1: $\int_{Y} R e\left(<\frac{1}{2} \theta \bullet \phi, \phi>\right) d v=\int_{Y}<\theta, \sigma(\phi)>d v$.
Applying the identity 2.28, it follows that

$$
i \int_{Y} \operatorname{Im}\left(<\frac{1}{2} \theta \bullet \phi, W>\right) d v=\int_{Y}<\sigma(\phi), \theta>d v
$$

By \mathbb{C}-linear extending to an operator $T_{\phi}: \Omega^{1}(Y, i \mathbb{R}) \rightarrow \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right), T_{\phi}(i \theta)=i \theta$, the identity above becames

$$
\begin{aligned}
\int_{Y}<\sigma(\phi), \theta>d v & =i \int_{Y} \operatorname{Im}\left(-i<\frac{1}{2} i \theta \bullet \phi, \phi>\right) d v= \\
& =-i \int_{Y} \operatorname{Re}\left(<\frac{1}{2} i \theta \bullet \phi, \phi>\right) d v .
\end{aligned}
$$

Hence,

$$
\int_{Y}<\sigma(\phi), i \theta>d v=\int_{Y} R e\left(<\frac{1}{2} i \theta \bullet \phi, \phi>\right) d v .
$$

step 2: By the $1^{s t}$-step,

$$
\int_{Y}<\sigma(\phi+W), i \theta>d v=\int_{Y} \operatorname{Re}\left(<\frac{1}{2} i \theta \bullet(\phi+W), \phi+W>\right) d v
$$

Therefore,

$$
\int_{Y}<\sigma(\phi, W), i \theta>d v=\int_{Y} R e\left(<\frac{1}{2} i \theta \bullet \phi, W>\right) d v
$$

Hence, $T_{\phi}^{*}(W)=\sigma(\phi, W)$.

Proposition 2.7. The L^{2}-gradient of Υ is

$$
\begin{equation*}
\nabla \Upsilon(A, \phi)=\left(-* F_{A}+\sigma_{3}(\phi), D_{A} \phi\right) . \tag{2.12}
\end{equation*}
$$

autor: Celso M Doria

Demonstração. First of all, let's observe that for $A \in \mathcal{A}_{\alpha}$ and $\Theta=i \theta \in \Omega^{1}(Y, i \mathbb{R})$,

1. $F_{A+t \Theta}=F_{A}+t d \Theta$;
2. $D_{A+t \Theta} \phi=\sum_{i} e_{i} \bullet \nabla_{i}^{A+t \Theta} \phi=\sum_{i} e_{i} \bullet\left\{\nabla_{i}^{A} \phi+t \Theta\left(e_{i}\right) \cdot \phi\right\}=D_{A} \phi+\frac{t}{2} \Theta \bullet \phi$. (the factor $1 / 2$ in the last expression is due to the Clifford multiplication, [5] pg 42, lemma 3.3.2)

The total derivative of Υ is $d \Upsilon=\left(\partial_{A} \Upsilon\right) d A+\left(\partial_{\phi} \Upsilon\right) d \phi$, where :

1. $\partial_{A} \Upsilon(A, \phi)=\int_{X}\left\{<-* F_{A}+\sigma_{3}(\phi), \Theta>\right\} d v_{g}$.

$$
\begin{aligned}
\partial_{A} \Upsilon(A, \phi) & \left.=\lim _{t \rightarrow 0} \frac{1}{t}\left\{\int_{Y}\left[\frac{1}{2} F_{A+t \Theta}+F_{0}\right) \wedge\left(A-A_{0}+t \Theta\right)+<D_{A+t \Theta} \phi, \phi>\right] d v_{g}-\Upsilon(A, \phi)\right\}= \\
& =\int_{Y}\left\{\left(d \Theta \wedge\left(A-A_{0}\right)+\left(F_{A}+F_{0}\right) \wedge \Theta\right\} d v_{g}+\frac{1}{2} \int_{Y}\left\{<\frac{1}{2} \Theta \bullet \phi, \phi>\right\} d v_{g}=\right. \\
& =\int_{Y}\left\{F_{A} \wedge \Theta+<\sigma_{3}(\phi), \Theta>\right\} d v_{g}=\int_{Y}\left\{-<* F_{A}, \Theta>+<\sigma_{3}(\phi), \Theta>\right\} d v_{g}= \\
& =\int_{Y}\left\{<-* F_{A}+\sigma_{3}(\phi), \Theta>\right\} d v_{g} .
\end{aligned}
$$

2. $\partial_{\phi} \Upsilon(A, \phi)=\int_{X} \mathfrak{\Re e}\left(<D_{A} \phi, V>\right) d v_{g}$.

$$
\begin{aligned}
\partial_{\phi} \Upsilon(A, \phi) & =\lim _{t \rightarrow 0} \frac{1}{2 t} \int_{Y}\left\{\left(F_{A}+F_{0}\right) \wedge\left(A-A_{0}\right)+<D_{A}(\phi+t V), \phi+t V>\right\} d v_{g}= \\
& =\frac{1}{2} \int_{Y}\left\{<D_{A} \phi, V>+<D_{A} V, \phi>\right\} d v_{g}=\int_{Y} \mathfrak{R e}\left(<D_{A} \phi, V>\right) d v_{g}
\end{aligned}
$$

Therefore,

$$
\nabla \Upsilon(A, \phi)=\left(-* F_{A}+\sigma_{3}(\phi), D_{A} \phi\right) .
$$

Remark 2. Once $\mathcal{F}_{\mathfrak{s}(\alpha)}=\operatorname{grad}(\Upsilon): \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow T \mathcal{C}_{\mathfrak{s}(\alpha)}$ is a $\mathcal{G}_{\mathfrak{s}(\alpha)}$-equivariant section, it induces the section $\mathcal{F}_{\mathfrak{s}(\alpha)}: \mathcal{B}_{\mathfrak{s}(\alpha)} \rightarrow T \mathcal{B}_{\mathfrak{s}(\alpha)}, T \mathcal{B}_{\mathfrak{s}(\alpha)}^{*}=\mathcal{E}_{\mathfrak{s}(\alpha)}$.

Although the $\mathcal{S W}$-equations are $\mathcal{G}_{\mathfrak{s}(\alpha)}$-invariant, the functional Υ is not, as shown next;

Proposition 2.8. Let $\alpha=c_{1}\left(\mathcal{L}_{\alpha}\right), g \in \mathcal{G}_{\mathfrak{s}(\alpha)}$ and $H^{1}\left(U_{1}, \mathbb{Z}\right)=<\mu>$. Thus,

$$
\Upsilon(g .(A, \phi))=\Upsilon(A, \phi)-8 \pi^{2}\left\{g^{*}(\mu) \cup \alpha\right\}([Y]),
$$

where $g^{*}: H^{1}\left(U_{1}, \mathbb{Z}\right) \rightarrow H^{1}(Y, \mathbb{Z})$.
autor: Celso M Doria

Demonstração. Since $\left[F_{A}\right]=\left[F_{0}\right]=2 \pi i c_{1}\left(\mathcal{L}_{\alpha}\right)$, the computations yield

$$
\Upsilon(g .(A, \phi))-\Upsilon(A, \phi)=\frac{1}{2} \int_{Y} g^{-1} d g \wedge\left(F_{A}+F_{0}\right)=-8 \pi^{2}\left\{g^{*}(\mu) \cup c_{1}\left(\mathcal{L}_{\alpha}\right)\right\}([Y])
$$

where $\mu=\frac{1}{2 \pi} d \theta$. From $g(y)=e^{\theta(y)}$ we get $d g=i e^{i \theta} d \theta$ and so $-i g^{-1} d g=d \theta$. Finally, $\frac{1}{2 \pi i} g^{-1} d g=\frac{1}{2 \pi} d \theta$.

From the last result, it follows that the functional Υ is not gauge invariant. In case we fix the identity component $\mathcal{G}_{\mathfrak{s}(\alpha)}^{0} \subset \mathcal{G}_{\mathfrak{s}(\alpha)}$, then Υ becames $\mathcal{G}_{\mathfrak{s}(\alpha)}^{0}$-invariant because, for all $g \in \mathcal{G}_{\mathfrak{s}(\alpha)}^{0}, g^{*} \mu=0$.

Definition 2.7.

$$
\left.d(\mathfrak{s}(\alpha))=\text { g.c.d\{<c } c_{1}(\mathfrak{s}(\alpha)), \tau>\right\}, \forall \tau \in H^{2}(Y, \mathbb{Z}) / \text { torsion } .
$$

In fact, Υ descends to a map $\mathcal{B}_{\mathfrak{s}(\alpha)} \rightarrow \mathbb{R} / d(\mathfrak{s}(\alpha))$.

2.3.1 \quad Slice for $\mathcal{B}_{\mathfrak{s}(\alpha)}=\mathcal{C}_{\mathfrak{s}(\alpha)} / \mathcal{G}_{\mathfrak{s}(\alpha)}$

The tangent space to the $\mathcal{G}_{\mathfrak{s}(\alpha)}$ action at (A, ϕ) is $T_{(A, \phi)}\left[\mathcal{G}_{\mathfrak{s}(\alpha)} \cdot(A, \phi)\right]$. In order to describe it, let $g_{t}:(-\epsilon, \epsilon) \rightarrow \mathcal{G}_{\mathfrak{s}(\alpha)}$ be a curve such that $g(0)=I$ and $g^{\prime}(0)=f$ (recall that $\mathcal{G}_{\mathfrak{s}(\alpha)}$ is a Lie group and its Lie algebra is $\left.\mathfrak{g}=\operatorname{Map}(Y, i \mathbb{R})=\Omega^{0}(Y, i \mathbb{R})\right)$. So,

$$
\begin{aligned}
g_{t} \cdot(A, \phi) & =\left(A+2 g_{t}^{-1} d g_{t}, g_{t}^{-1} \phi\right) \\
\left.\frac{d}{d t}\left(g_{t} \cdot(A, \phi)\right)\right|_{t=0} & =(2 d f,-f . \phi) \in \Omega^{1}(X, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) .
\end{aligned}
$$

Let $G_{(A, \phi)}: \Omega^{0}(Y, i \mathbb{R}) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ be the map

$$
\begin{equation*}
G_{(A, \phi)}(f)=(2 d f,-f . \phi), \quad \operatorname{Imag}\left(G_{(A, \phi)}\right)=T_{(A, \phi)} \mathcal{G}_{\mathfrak{s}(\alpha)} \cdot(A, \phi) . \tag{2.13}
\end{equation*}
$$

Once

$$
\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)=\operatorname{Imag}\left(G_{(A, \phi)}\right) \oplus \operatorname{ker}\left(G_{(A, \phi)}^{*}\right)
$$

the slice is locally described by $\operatorname{Ker}\left(G_{(A, \phi)}^{*}\right)$. First of all, recall that $\Omega^{1}(X, i \mathbb{R})=$ $\operatorname{Imag}(d) \oplus \operatorname{ker}\left(d^{*}\right)$. Next, we consider the map $t_{\phi}: \Omega^{0}(Y, i \mathbb{R}) \rightarrow \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right), t_{\phi}(f)=f . \phi$ and its dual map $t_{\phi}^{*}: \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Omega^{0}(Y, i \mathbb{R})$;
autor: Celso M Doria

$$
\begin{aligned}
<t_{\phi}(f), V> & =\int_{Y}<t_{\phi}(f)(y), V(y)>d v_{g}=\int_{Y} f(y)[-\overline{<\phi(y), V(y)>}] d v_{g}= \\
& =<f,-<\phi, V \gg
\end{aligned}
$$

Thus, $t_{\phi}^{*}(V)=-<\phi, V>$ is a map $t_{\phi}^{*}: \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Omega^{0}(Y, \mathbb{C})$, which projection on $\Omega^{0}(Y, i \mathbb{R})$ gives the desired map $\left.t_{\phi}^{*}(V)=-i \operatorname{Im}(<\phi, V\rangle\right)$. Finally,

$$
\begin{equation*}
G_{(A, \phi)}^{*}(\Theta, V)=2 d^{*} \theta+i \operatorname{Im}(<\phi, V>) \tag{2.14}
\end{equation*}
$$

and so $\left(T_{g .(A, \phi)}\right)^{\perp}=\operatorname{Ker}\left(G_{(A, \phi)}^{*}\right)=\operatorname{Ker}\left(d^{*}\right) \oplus \operatorname{Ker}(i \operatorname{Im}(<\phi, .>))$. If $\phi=0$, then $\left(T_{g .(A, 0)}\right)^{\perp}=\operatorname{Ker}\left(G_{(A, 0)}^{*}\right)=\operatorname{Ker}\left(d^{*}\right) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$.

The derivative $d g_{(A, \phi)}: T_{(A, \phi)} \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow T_{g .(A, \phi)} \mathcal{C}_{\mathfrak{s}(\alpha)}$ of the map $g: \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow \mathcal{C}_{\mathfrak{s}(\alpha)}$ at (A, ϕ) induces a map $d g_{(A, \phi)}: \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right) \rightarrow \operatorname{Ker}\left(G_{g \cdot(A, \phi)}^{*}\right)$, where (i) if $\phi \neq 0$, then $d g_{(A, \phi)} \cdot(\theta, V)=\left(\theta, g^{-1} V\right)$, (ii) if $\phi=0$, then $d g_{(A, \phi)} \cdot(\theta, V)=(\theta, V)$.

In order to obtain a local chart for $\mathcal{B}_{\mathfrak{s}(\alpha)}$, consider the C^{∞}-map

$$
\begin{align*}
\Phi_{(A, \phi)} & : \tag{2.15}\\
& \operatorname{er}\left(G_{(A, \phi)}^{*}\right) \times \mathcal{G}_{\mathfrak{s}(\alpha)} \rightarrow \mathcal{C}_{\mathfrak{s}(\alpha)}, \tag{2.16}\\
& ((\theta, V), g) \longmapsto g .(\theta, V)=\left(\theta+2 g^{-1} d g, g^{-1} V\right) .
\end{align*}
$$

and the following two cases:

1. $\phi \neq 0$;

The derivative at (A, ϕ) is

$$
d\left(\Phi_{(A, \phi)}\right)_{((\theta, V), I)}((\omega, W), f)=(\omega+2 d f,-f V+W), d^{*} w=0, W \in V^{\perp}
$$

By construction, if (A, ϕ) is an irreducible point, then $d \Phi_{(A, \phi)}$ is onto. Hence, by the Inverse Function Theorem there exists a neighbourhood $\mathcal{U} \subset \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right) \times \mathcal{G}_{\mathfrak{s}(\alpha)}$ of $((A, \phi), I)$ such that $\Phi_{(A, \phi)}: \mathcal{U} \rightarrow \mathcal{C}_{\mathfrak{s}(\alpha)}$ is a diffeomorphism. Therefore, a neighbourhood of $[(A, \phi)] \in \mathcal{B}_{\mathfrak{s}(\alpha)}$ is diffeomorphic to a neighbourhood of $(0,0) \in$ $\operatorname{Ker}\left(G_{(A, \phi)}^{*}\right)$.
2. $\phi=0$; At a redutible point $(A, 0)$, the derivative is no longer onto because $\operatorname{Ker}\left(G_{(A, 0)}^{*}\right)=\operatorname{Ker}\left(d^{*}\right) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ is $G_{(A, 0)}$-invariant. In order to describe the link of a singular point $(A, 0)$, let's consider $\epsilon>0$ and \mathcal{W} a neighbourhood of the origin in $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$, such that $S_{\epsilon}^{\infty}=\left\{V \in \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) ;|V|=\epsilon\right\} \subset \mathcal{W}$. So,

$$
\begin{aligned}
& \left\{\operatorname{Ker}\left(G_{(A, 0)}^{*}\right) \cap\left\{\operatorname{Ker}\left(d^{*}\right) \oplus(\mathcal{W}-\{0\})\right\}\right\} / G_{(A, 0)}= \\
= & \left.\left\{\operatorname{Ker}\left(d^{*}\right) \oplus(\mathcal{W}-\{0\}) / U_{1}\right)\right\} \stackrel{\text { htpy }}{\sim} S_{\epsilon}^{\infty} / U_{1}=\mathbb{C} P^{\infty} .
\end{aligned}
$$

autor: Celso M Doria

Hence, a neighbourhood of a reducible point $(A, 0) \in \mathcal{C}_{\mathfrak{s}(\alpha)}$ is homotopic to a cone over $\mathbb{C} P^{\infty}$.

2.3.2 Homotopy Aspects

Thus $\mathcal{C}_{\mathfrak{s}(\alpha)}^{*}$ is an universal bundle and the base space $\mathcal{B}_{\mathfrak{s}(\alpha)}^{*}$ is the classifying space for $\mathcal{G}_{\mathfrak{s}(\alpha)}$-vector bundles. In this way, for each $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{\mathbb{C}}$, the vector bundles $\mathcal{E}_{\mathfrak{s}(\alpha)}$ are classified by the homotopy classes $\left[\mathcal{B}_{\mathfrak{s}(\alpha)}^{*}, \mathcal{B}_{\mathfrak{s}(\alpha)}^{*}\right]$. The space $\mathcal{B}_{\mathfrak{s}(\alpha)}^{*}$ has the homotopy type of $T^{b_{1}}(Y) \times \mathbb{C} P^{\infty}$, where $T^{b_{1}}(Y)=H^{1}(Y, \mathbb{R}) / H^{1}(Y, \mathbb{Z})$ and $b_{1}=\operatorname{dim} H^{1}(Y, \mathbb{R})$. So,

$$
\begin{aligned}
{\left[\mathcal{B}_{\mathfrak{s}(\alpha)}^{*}, \mathcal{B}_{\mathfrak{s}(\alpha)}^{*}\right] } & =H^{2}\left(\mathcal{B}_{\mathfrak{s}(\alpha)}^{*}, \mathbb{Z}\right) \oplus\left(H^{1}\left(\mathcal{B}_{\mathfrak{s}(\alpha)}^{*}, \mathbb{Z}\right)\right)^{b_{1}}= \\
& =\left[H^{2}\left(\mathbb{C} P^{\infty}, \mathbb{Z}\right) \oplus H^{2}\left(T^{b_{1}}, \mathbb{Z}\right)\right] \oplus\left[H^{1}\left(T^{b_{1}}, \mathbb{Z}\right)\right]^{b_{1}}= \\
& =\mathbb{Z} \oplus \mathbb{Z}^{\frac{b_{1}\left(b_{1}-1\right)}{2}} \oplus \mathbb{Z}^{b_{1}^{2}}
\end{aligned}
$$

If $b_{1}(Y)=0$, then the euler class $\chi\left(\mathcal{E}_{\mathfrak{s}(\alpha)}\right) \in H^{2}\left(\mathbb{C} P^{\infty}, \mathbb{Z}\right) \simeq \mathbb{Z}$.
Later, when studying the deformed $\mathcal{S W}$-equations, it will become clear that the $H^{2}\left(\mathbb{C} P^{\infty}, \mathbb{Z}\right)$ contribution is the one which matters to define the Seiberg-Witten invariant, since the others contribution will vanish by the ausence of reducible solutions. In this way, we consider the heuristic euler class $\mu_{\mathfrak{s}(\alpha)}=\chi\left(\mathcal{E}_{\mathfrak{s}(\alpha)}\right) \in H^{2}\left(\mathcal{B}_{\mathfrak{s}(\alpha)}^{*}, \mathbb{Z}\right)$. Also, by using the $1^{s t}$-Chern class of the principal U_{1}-bundle $\mathfrak{b}: \mathcal{B}_{\mathfrak{s}(\alpha)}^{0} \rightarrow \mathcal{B}_{\mathfrak{s}(\alpha)}^{*}$, the $\mathcal{S W}$-invariant is defined as $\mu_{\mathfrak{s}(\alpha)}=c_{1}(\mathfrak{b}) \in H^{2}\left(\mathbb{C} P^{\infty}, \mathbb{Z}\right) \simeq \mathbb{Z}$.

2.3.3 The Moduli Space of $\mathcal{S} \mathcal{W}_{\mathfrak{s}(\alpha)}$-Monopoles

The local description of the $\mathcal{S} \mathcal{W}_{\mathfrak{s}(\alpha)}$-monopole space $\mathcal{M}_{\mathfrak{s}(\alpha)}=\mathcal{F}_{\mathfrak{s}(\alpha)}^{-1}(0) / \mathcal{G}_{\mathfrak{s}(\alpha)}$ depends on its linear approximation. Since $\mathcal{F}_{\mathfrak{s}(\alpha)}: \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \oplus \Omega^{1}(Y, i \mathbb{R})$ is C^{∞}, its derivative ${ }^{1}\left(d \mathcal{F}_{\mathfrak{s}(\alpha)}\right)_{(A, \phi)}: \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ restricted to the slice is

$$
\begin{aligned}
& \left(d \mathcal{F}_{\mathfrak{s}(\alpha)}\right)_{(A, \phi)} \cdot(\Theta, V)=\partial_{A} \mathcal{F}_{\mathfrak{s}(\alpha)}(A, \phi) \Theta+\partial_{\phi} \mathcal{F}_{\mathfrak{s}(\alpha)}(A, \phi) V, \\
& =\left(* d \Theta+\sigma_{3}(\phi, V), D_{A}(V)+\frac{1}{2} \Theta \cdot \phi\right)=\left(\begin{array}{cc}
* d & \sigma_{3}(\phi, .) \\
\frac{1}{2}(.) \phi & D_{A}
\end{array}\right) \cdot\binom{\Theta}{V} .
\end{aligned}
$$

The term $\Theta \bullet \phi$ is defined by $\Theta \bullet \phi=\sum_{i} \Theta\left(e_{i}\right) e_{i} \bullet \phi$. Whenever (A, ϕ) is a solution to the $\mathcal{S} \mathcal{W}_{\mathfrak{s}(\alpha) \text {-equations, }}$ then the restriction to $\operatorname{Imag}\left(G_{(A, \phi)}\right)$ is null, i.e.,

$$
\begin{equation*}
d \mathcal{F}_{\mathfrak{s}(\alpha)} \circ G_{(A, \phi)}(f)=\left(d \mathcal{F}_{\mathfrak{s}(\alpha)}\right)_{(A, \phi)} \cdot(2 d f,-f \cdot \phi)=0 \tag{2.17}
\end{equation*}
$$

Remark 3. The operator $\left(d \mathcal{F}_{\mathfrak{s}(\alpha)}\right)_{(A, \phi)}$ is self-adjoint and is also the hessian of the functional Υ at (A, ϕ);

[^3]1. For the sake of simplicity, let $L_{(A, \phi)}=\left(d \mathcal{F}_{\mathfrak{s}(\alpha)}\right)_{(A, \phi)}$.
2. If $(A, \phi) \in \mathcal{F}_{\mathfrak{s}(\alpha)}^{-1}(0)$, then by equation $2.17 L_{(A, \phi)} \circ G_{(A, \phi)}=0$.
3. At (A, ϕ), the linearization of $\mathcal{F}_{\mathfrak{s}(\alpha)}$ yields the sequence

$$
\begin{equation*}
\Omega^{0}(Y, i \mathbb{R}) \xrightarrow{G_{(A, \phi)}} \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \xrightarrow{L_{(A, \phi)}} \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right), \tag{2.18}
\end{equation*}
$$

which is a complex if (A, ϕ) is a $\mathcal{S W}$-monopole and exact if $\operatorname{Ker}\left(L_{(A, \phi)}\right)=\operatorname{Im}\left(G_{(A, \phi)}\right)$. In analogy with Hodge Theory, the introduction of the vector spaces

$$
\begin{align*}
H_{(A, \phi)}^{0} & =\operatorname{Ker}\left(G_{(A, \phi)}\right), \quad H_{(A, \phi)}^{1}=\operatorname{Ker}\left(L_{(A, \phi)}\right) \cap \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right), \tag{2.19}\\
H_{(A, \phi)}^{2} & =\left\{\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right\} / \operatorname{Imag}\left(L_{(A, \phi)}\right), \tag{2.20}
\end{align*}
$$

leads to the following useful interpretations;
(a) $H_{(A, \phi)}^{0} \neq 0 \Leftrightarrow(A, \phi)$ is reducible.
(b) $H_{(A, \phi)}^{2}=0 \Leftrightarrow L_{(A, \phi)}$ is onto. It is also equivalent to the transversality of the section $\mathcal{F}_{\mathfrak{s}(\alpha)}: \mathcal{B}_{\mathfrak{s}(\alpha)} \rightarrow \mathcal{E}_{\mathfrak{s}(\alpha)}$.
(c) if $H_{(A, \phi)}^{0}=0$ and $H_{(A, \phi)}^{2}=0$, then $\mathcal{M}_{\mathfrak{s}(\alpha)}$ is a manifold and $H_{(A, \phi)}^{1}=$ $T_{(A, \phi)} \mathcal{M}_{\mathfrak{s}(\alpha)}$.
4. At $(A, 0)$,

$$
L_{(A, 0)}=\left(\begin{array}{cc}
* d & 0 \\
0 & D_{A}
\end{array}\right) \cdot\binom{\Theta}{V} .
$$

5. let $H_{\Upsilon}(A, \phi): T_{(A, \phi} \mathcal{C}_{\mathfrak{s}(\alpha)} \times T_{(A, \phi)} \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow \mathbb{R}$ be the bilinear map associated to the hessian of the functional Υ; thus,

$$
H_{\Upsilon}((\Theta, V),(\Lambda, W))=\overline{<(\Theta, V), L_{(A, \phi)}(\Lambda, W)>} .
$$

Lemma 2.3. If $(A, \phi) \in \mathcal{M}_{\mathfrak{s}(\alpha)}$, then

$$
L_{(A, \phi)}: \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right) \rightarrow \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right)
$$

autor: Celso M Doria

Demonstração. Let $(A, \phi) \in \mathcal{M}_{\mathfrak{s}(\alpha)}$ and $(\theta, V) \in \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right)$.

$$
\begin{aligned}
G_{(A, \phi)}^{*} \circ L_{(A, \phi)}(\theta, V) & =d^{*}\left(-* d \theta+\sigma_{3}(\phi, V)\right)+i \operatorname{Im}\left(<\phi, D_{A} V+\frac{1}{2} \theta \bullet V>\right)= \\
& =d^{*}\left(\sigma_{3}(\phi, V)\right)+i \operatorname{Im}\left(<\phi, \frac{1}{2} \phi \bullet V>\right)
\end{aligned}
$$

By lemma 2.2, $\left.\operatorname{iIm}\left(<\phi, \frac{1}{2} \phi \bullet V\right\rangle\right)=0$. The computation of term $d^{*}\left(\sigma_{3}(\phi, V)\right)$ is performed assuming the identity

$$
d^{*}\left(\sigma_{3}(\phi)\right)=i \operatorname{Im}\left(<D_{A} \phi, \phi>\right)
$$

and applying it to $\phi+V$. Comparing the terms in the expressions below,
$d^{*}\left(\sigma_{3}(\phi+V)\right)=d^{*}\left(\sigma_{3}(\phi)\right)+d^{*}\left(\sigma_{3}(V)\right)+2 d^{*}\left(\sigma_{3}(\phi, V)\right)$, $\operatorname{Im}\left(<D_{A}(\phi+V), \phi+V>\right)=\operatorname{Im}\left(<D_{A} \phi, \phi>\right)+\operatorname{Im}\left(<D_{A} V, V>\right)+2 \mathfrak{R e}\left(<D_{A} \phi, V>\right)$,
it follows that $d^{*}\left(\sigma_{3}(\phi, V)\right)=0$.
Claim: $d^{*}\left(\sigma_{3}(\phi)\right)=i \operatorname{Im}\left(<D_{A} \phi, \phi>\right) ;$
In order to prove it, consider at y_{0} a normal frame $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ and its coframe $\beta^{*}=\left\{e^{1} . e^{2}, e^{3}\right\}\left(e^{i} \wedge * e^{j}=\delta^{i j} d v_{g}\right)$, such that $\left(\nabla_{e_{j}}^{A} e_{i}\right)\left(y_{0}\right)=0$. So,

$$
\nabla_{e_{j}}^{A}\left(e_{i} \bullet \phi\right)\left(y_{0}\right)=\left(e_{i} \bullet \nabla_{e_{j}}^{A} \phi\right)\left(y_{0}\right) .
$$

Since $A \in \mathfrak{s u}_{2}$ and $d^{*}=-* d *$,

$$
\begin{aligned}
d^{*}\left(\sigma_{3}(\phi)\right) & =-\frac{1}{2} \sum_{i=1}^{3} d^{*}\left(<e_{i} \bullet \phi, \phi>e^{i}\right)=\frac{1}{2} \sum_{i=1}^{3} * d *\left(<e_{i} \bullet \phi, \phi>e^{i}\right)= \\
& =\frac{1}{2} \sum_{i=1}^{3} *\left(\left\langle e_{i} \bullet \nabla_{e_{j}}^{A} \phi, \phi>+<e_{i} \bullet \phi, \nabla_{e_{j}}^{A} \phi>\right) *\left(e^{i} \wedge * e^{i}\right)=\right. \\
& =\frac{1}{2} \sum_{i=1}^{3} *\left(\left\langle e_{i} \bullet \nabla_{e_{j}}^{A} \phi, \phi>-<\phi, e_{i} \bullet \nabla_{e_{j}}^{A} \phi>\right) *\left(e^{i} \wedge * e^{i}\right)=\right. \\
& =\frac{1}{2}\left(<D_{A} \phi, \phi>-<\phi, D_{A} \phi>\right) * d v_{g}=i \operatorname{Im}\left(<D_{A} \phi, \phi>\right) .
\end{aligned}
$$

The analysis becames more neat by introducing the self-adjoint operator $\mathcal{T}_{(A, \phi)}$: $\left(\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right) \oplus \Omega^{0}(X, i \mathbb{R}) \rightarrow\left(\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right) \oplus \Omega^{0}(Y, i \mathbb{R})$, defined by

$$
\begin{aligned}
\mathcal{T}_{(A, \phi)}((\Theta, V), f) & =\left(L_{(A, \phi)}(\Theta, V)+G_{(A, \phi)}(f), G_{(A, \phi)}^{*}(\Theta, V)\right)= \\
& =\left(\begin{array}{cc}
L_{(A, \phi)} & G_{(A, \phi)} \\
G_{(A, \phi)}^{*} & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\Theta \\
V \\
f
\end{array}\right) .
\end{aligned}
$$

Note that $\mathcal{T}_{(A, \phi)}$ may have a chance of being an isomorphism (this analysis will be carried out later in order to achieve the surjectivity). It is important to keep track of the term $\operatorname{Ker}\left(\left.\mathcal{T}_{(A, \phi)}\right|_{\Omega^{0}}\right)=H^{0}(Y, i \mathbb{R})$ introduced along with the $\Omega^{0}(Y, i \mathbb{R})$ direct summand because this sort of solution, named virtual solution, do not belongs to the monopole space .

Now, the whole of the information of the complex 2.18 is incoded into the kernel of the operator $\mathcal{T}_{(A, \phi)}$ as follows; assume $(A, \phi) \in\left(\mathcal{F}_{\mathfrak{s}(\alpha)}\right)^{-1}(0)$, so

$$
((\Theta, V), f) \in \operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right) \Leftrightarrow\left\{\begin{array}{l}
(i) L_{(A, \phi)}(\Theta, V)=0 \\
(i i) G_{(A, \phi)}^{*}(\Theta, V)=0 \\
(i i i) G_{(A, \phi)}(f)=0
\end{array}\right.
$$

Hence, $\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)=H_{(A, \phi)}^{0} \oplus H_{(A, \phi)}^{1}$. The vector space $H_{(A, \phi)}^{2}$ is the obstruction to the surjectivity of $\mathcal{T}_{(A, \phi)}$. In this set up, the cohomology groups defined in 2.19 are described as follows:

$$
\begin{aligned}
H_{(A, \phi)}^{0} & =\operatorname{Ker}\left(G_{(A, \phi)}\right), \quad H_{(A, \phi)}^{1}=\operatorname{Ker}\left(L_{(A, \phi)}\right) \cap \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right)=\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right), \\
H_{(A, \phi)}^{2} & =\left\{\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right\} / \operatorname{Imag}\left(\mathcal{T}_{(A, \phi)}\right)
\end{aligned}
$$

Besides,

1. $H_{(A, \phi)}^{0} \neq 0 \Leftrightarrow(A, \phi)$ is reducible.
2. $H_{(A, \phi)}^{2}=0 \Leftrightarrow \mathcal{T}_{(A, \phi)}$ is onto.
3. if $H_{(A, \phi)}^{0}=0$ and $H_{(A, \phi)}^{2}=0$, then $\mathcal{M}_{\mathfrak{s}(\alpha)}$ is a manifold and $H_{(A, \phi)}^{1}=T_{(A, \phi)} \mathcal{M}_{\mathfrak{s}(\alpha)}=$ $\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)$.

The space $\mathcal{M}_{\mathfrak{s}(\alpha)}^{*}$ seen as the intersection in $\mathcal{E}_{\mathfrak{s}(\alpha)}$ of sections $\mathcal{F}_{\mathfrak{s}(\alpha)}: \mathcal{B}_{\mathfrak{s}(\alpha)}^{*} \rightarrow \mathcal{E}_{\mathfrak{s}(\alpha)}$ and 0 -section is a manifold. However, the transversality condition may not occur and to handle the lack of transversality a perturbation will be performed later.

The operator $\mathcal{T}_{(A, \phi)}$ described in coordinates is

$$
\begin{aligned}
\mathcal{T}_{(A, \phi)} & \left.=\left(\begin{array}{cc}
L_{(A, \phi)} & G_{(A, \phi)} \\
G_{(A, \phi)}^{*} & 0
\end{array}\right) \cdot\binom{\Theta}{V}\right)=\left(\begin{array}{ccc}
* d & -\sigma_{3}(\phi, .) & 2 d \\
f
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2}(.) \cdot \phi & D_{A} \\
2 d^{*} & i \operatorname{Im}(<\phi, .>) \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
\Theta \\
V \\
f
\end{array}\right)= \\
& =\left(\begin{array}{ccc}
* d & 0 & 2 d \\
0 & D_{A} & 0 \\
2 d^{*} & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\Theta \\
V \\
f
\end{array}\right)+\left(\begin{array}{ccc}
0 & -\sigma_{3}(\phi, .) & 0 \\
\frac{1}{2}(.) \cdot \phi & 0 & -(.) \phi \\
0 & i \operatorname{Im}(<\phi, .>) & 0
\end{array}\right) \cdot\left(\begin{array}{l}
\Theta \\
V \\
f
\end{array}\right) .
\end{aligned}
$$

It can be decomposed as $\mathcal{T}_{(A, \phi)}=\mathcal{P}_{(A, \phi)} \oplus \mathcal{Q}_{(A, \phi)}+K_{(A, \phi)}$, where

$$
\mathcal{P}_{(A, \phi)}=\left(\begin{array}{ccc}
* d & 0 & 2 d \\
0 & 0 & 0 \\
2 d^{*} & 0 & 0
\end{array}\right), \quad \mathcal{Q}_{(A, \phi)}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & D_{A} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

are self-adjoint elliptic operators and

$$
K_{(A, \phi)}=\left(\begin{array}{ccc}
0 & -\sigma_{3}(\phi, .) & 0 \\
\frac{1}{2}(.) \cdot \phi & 0 & -(.) \phi \\
0 & i \operatorname{Im}(<\phi, .>) & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\Theta \\
V \\
f
\end{array}\right) .
$$

is a compact operator (the resolvent). The operator $\mathcal{P}_{(A, \phi)}: \Omega^{1}(Y, i \mathbb{R}) \oplus \Omega^{0}(Y, i \mathbb{R}) \rightarrow$ $\Omega^{1}(Y, i \mathbb{R}) \oplus \Omega^{0}(Y, i \mathbb{R})$ is the rolled-up operator obtained by the composition

$$
\Omega^{1} \oplus \Omega^{0}\left(\begin{array}{cc}
* & 0 \\
0 & 2 . I
\end{array}\right) \Omega^{2} \oplus \Omega^{0} \xrightarrow{\left(\begin{array}{cc}
d^{*} & d \\
d & 0
\end{array}\right)} \Omega^{1} \oplus \Omega^{3} \xrightarrow{\left(\begin{array}{cc}
I & 0 \\
0 & 2 *
\end{array}\right)} \Omega^{1} \oplus \Omega^{0}
$$

Remark 4. At a reducible solution $(A, 0)$,

1. $H_{(A, 0)}^{0}=H^{0}(Y, \mathbb{R})$,
2. $H_{(A, 0)}^{1}=\operatorname{Ker}\left(\mathcal{T}_{(A, 0)}\right)=H^{0}(Y, \mathbb{R}) \oplus H^{1}(Y, \mathbb{R}) \oplus \operatorname{Ker}\left(D_{A}\right)$. The $H^{0}(Y, i \mathbb{R})$ summand correspond to the virtual solutions and the $H^{1}(Y, i \mathbb{R})$ corresponds to the tangent space to the Jacobian torus $T^{b_{1}(Y)}$.
3. The self-adjointness of $\mathcal{P}_{(A, 0)}$ and $\mathcal{Q}_{(A, 0)}$ yields $H_{(A, 0)}^{2}=H_{(A, 0)}^{1}$.
4. For later purposes: if $b_{1}(Y)=0$, then $H_{(A, 0)}^{1}=H_{(A, 0)}^{2}=\operatorname{Ker}\left(D_{A}\right)$.

Theorem 2.2. The operator $\mathcal{T}_{(A, \phi)}$ is a self-adjoint operator with domain the vector space $\left(\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right) \oplus \Omega^{0}(X, i \mathbb{R})$ endowed with a $L^{1,2}$ Sobolev structure and image in the vector space $\left(\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right) \oplus \Omega^{0}(X, i \mathbb{R})$ endowed with a L^{2} Sobolev structure. Moreover, $\mathcal{T}_{(A, \phi)}$ has compact resolvent and thus discrete spectrum. In particular, it is a Fredholm operator.

Demonstração. Its symbol defines a isomorphism, so $\mathcal{T}_{(A, \phi)}$ is an elliptic operator over a compact manifold, hence it is an Fredholm operator.

Definition 2.8. A monopole $(A, \phi) \in \mathcal{M}_{\mathfrak{s}(\alpha)}$ is non-degenerated if $H_{(A, \phi)}^{1}=0$.
The non-degenerency means that, up to gauge equivalence, $\operatorname{Ker}\left(H_{\Upsilon}\right)=\{0\}$ at (A, ϕ) and H_{Υ} is surjective. If $(A, 0)$ is a reducible solution and $b_{1}(Y)>0$, then the nondegenerecency is never achieved because $H_{(A, 0)}^{2}=H^{1}(Y, \mathbb{R}) \oplus \operatorname{Ker}\left(D_{A}\right)$, by remark 4.3. If $b_{1}(Y)=0$, then the obstruction to achieve the transversality is $H_{(A, 0)}^{2}=\operatorname{Ker}\left(D_{A}\right)$.
Proposition 2.9. The non-degenerated points are isolated.
Demonstração. Let $(A, \phi) \in \mathcal{M}_{\mathfrak{s}(\alpha)}$ be a non-degenerated point. Thus, the linear map $\left(d \mathcal{F}_{\mathfrak{s}(\alpha)}\right)_{(A, \phi)}: \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right) \rightarrow \Omega^{1} \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\left(\left(d \mathcal{F}_{\mathfrak{s}(\alpha)}\right)_{(A, \phi)}=L_{(A, \phi)}\right)$ is non singular, or equivalently $\operatorname{Ker}\left(L_{(A, \phi)}\right) / \mathcal{G}_{\mathfrak{s}(\alpha)}=\{0\}$. Hence, \mathcal{F} is an immersion at (A, ϕ). By the Inverse Function Theorem, there exists a neighbourhood U of (A, ϕ) such that $\mathcal{F}: U \rightarrow$ $\mathcal{F}(U)$ is a difeomorphism. If (A, ϕ) were not isolated it would exist a sequence of points $\left(A_{n}, \phi_{n}\right) \in \mathcal{M}_{\mathfrak{s}(\alpha)}$ and $n_{0} \in \mathbb{N}$ such that, $\forall n>n_{0},\left(A_{n}, \phi_{n}\right) \in U$, which is a contradiction with the fact that $\left.\mathcal{F}\right|_{U}$ is a difeomorphism.

Thanks to the compacity of $\mathcal{M}_{\mathfrak{s}(\alpha)}$, whenever the non-degenerecency is satisfied for all $(A, \phi) \in \mathcal{M}_{\mathfrak{s}(\alpha)}^{*}$, then $\mathcal{M}_{\mathfrak{s}(\alpha)}^{*}$ is a 0 -dimensional manifold, hence a finite set of points.

2.3.4 Perturbed $\mathcal{S W}$-Equations

In order to achieve the transversal condition $H_{(A, \phi)}^{2}=0$ a perturbation is performed on the functional Υ. Let $Z^{2}(Y, i \mathbb{R})=\left\{\nu \in \Omega^{2}(Y, i \mathbb{R}) \mid d \nu=0\right\}$ be the space of closed 2 -forms.

Definition 2.9. Fix $A_{0} \in \mathcal{A}_{\alpha}$ and $\nu \in Z^{2}(Y, i \mathbb{R})$. Consider $\Upsilon_{\nu}: \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow \mathbb{R}$ as

$$
\Upsilon_{\nu}=\frac{1}{2} \int_{Y}\left\{\left(A-A_{0}\right) \wedge\left(F_{A}+F_{0}+2 \nu\right)+<D_{A} \phi, \phi>\right\}
$$

Remark 5. .

1. Υ_{ν} is $\mathcal{G}_{\mathfrak{s}(\alpha) \text {-invariant. }}$
2. The formula 2 becames

$$
\left.\Upsilon_{\nu}(g \cdot(A, \phi))=\Upsilon_{\nu}(A, \phi)-\left\{\left(4 \pi g^{*}(\mu)+[\nu]\right)\right) \cup 2 \pi c_{1}(L)\right)([Y]) .
$$

3. The L^{2}-gradient of Υ_{ν} is

$$
\begin{equation*}
\operatorname{grad}\left(\Upsilon_{\nu}\right)(A, \phi)=\left(-* F_{A}+\sigma_{3}(\phi)+* \nu, D_{A} \phi\right) \tag{2.21}
\end{equation*}
$$

The map $\nu \mapsto \operatorname{grad}\left(\Upsilon_{\nu}\right)$ defines a section of $\mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}: \mathcal{B}_{\mathfrak{s}(\alpha)} \rightarrow \mathcal{E}_{\mathfrak{s}(\alpha)}$.
autor: Celso M Doria

Definition 2.10. Let $\nu \in \Omega^{2}(Y, i \mathbb{R})$ be a closed 2-form. The ν-perturbed $\mathcal{S} \mathcal{W}$-equations are

$$
\begin{equation*}
-* F_{A}+\sigma_{3}(\phi)+* \nu=0, \quad D_{A} \phi=0 . \tag{2.22}
\end{equation*}
$$

The ν-monopole space is $\mathcal{M}_{\mathfrak{s}(\alpha)}(\nu)=\left(\mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}\right)^{-1}(0)$.

Remark 6. .

1. Consider the map

$$
\begin{gather*}
\mathcal{F}: Z^{2}(Y, i \mathbb{R}) \times \Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right), \tag{2.23}\\
\mathcal{F}(\nu, A, \phi)=\mathcal{F}^{\nu}(A, \phi)=\left(-* F_{A}+\sigma_{3}(\phi)+* \nu, D_{A} \phi\right) . \tag{2.24}
\end{gather*}
$$

Its derivative is the linear operator

$$
\begin{gathered}
L_{(A, \phi)}^{\nu}: Z^{2}(Y, i \mathbb{R}) \oplus \Omega^{1}(X, i \mathbb{R}) \oplus \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right) \rightarrow \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right), \\
L_{(A, \phi)}^{\nu}((\zeta,(\Theta, V)))=L_{(A, \phi)}(\Theta, V)+(* \zeta, 0)
\end{gathered}
$$

2. Fixed ν and suppose that the equation $F_{A}=\nu$ admits a solution A_{0}; recall that a necessary condition for the existence of A_{0} is $\frac{\nu}{2 \pi i}=c_{1}\left(\mathcal{L}_{\alpha}\right) \in H^{1}(Y, \mathbb{Z})$. Thus, $\left(A_{0}, 0\right)$ is a reducible solution for the ν-perturbed $\mathcal{S W}$-equation. Whenever $a \in$ $\Omega^{1}(Y, i \mathbb{R})$ is closed, $\left(A_{0}+a, 0\right)$ is also a reducible solution. Besides, A_{0} and $A_{0}+a$ are gauge equivalent iff $[a] \in H^{1}(Y, \mathbb{Z})$, where $H^{1}(Y, \mathbb{Z})$ is a lattice within $H^{1}(Y, \mathbb{R})$. So, if the space of reducible solutions is not empty, then it is diffeomorphic to the Jacobian torus $T^{b_{1}(Y)}=H^{1}(Y, \mathbb{R}) / H^{1}(Y, \mathbb{Z})$. There are three cases to be analysed;
$b_{2}(Y)>1$: The space $H^{2}(Y, \mathbb{R})-H^{2}(Y, \mathbb{Z})$ is arc connected. Therefore, the space of closed 2-forms ν not admiting reducible solutions is connected.
$b_{2}(Y)=1$: Once $\operatorname{dim}\left(H^{2}(Y, \mathbb{R})\right)=1$, the space $H^{2}(Y, \mathbb{R})-H^{2}(Y, \mathbb{Z})$ has many arc connect components. In his case, the space of closed 2 -forms not admiting reducible solutions has also many arc connected components.
$b_{2}(Y)=0$: In this case, for every closed 2-form ν there exist a reducible solution $(A, 0)$ of $F_{A}=\nu$, and it is unique up to gauge equivalence. To construct such solution it is enough to observe that ν being exact yields $\nu=d \mu$, for some $\mu \in \Omega^{1}(Y, i \mathbb{R})$, and also that the bundle \mathcal{L}_{α} admits a flat connection A_{0}. So, $\left(A_{0}+\mu, 0\right)$ is a ν-reducible solution, which is unique up to the $\mathcal{G}_{\mathfrak{s}(\alpha)}$-action.

Theorem 2.3. Consider the map $\mathcal{F}_{\mathfrak{s}(\alpha)}: Z^{2}(Y, i \mathbb{R}) \times \mathcal{C}_{\mathfrak{s}(\alpha)} \rightarrow \Omega^{1}(X, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$, defined by $\mathcal{F}_{\mathfrak{s}(\alpha)}(A, \phi, \nu)=\mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}(A, \phi)$. The following claims are true:

1. There is a Baire subset of ${ }_{2}$-forms $\mathfrak{F}^{2} \subset Z^{2}(Y, i \mathbb{R})$ such that, for all $\nu \in \mathfrak{F}^{2}, \mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}$ is tranversal to the 0 -section at $(A, \phi) \in\left(\mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}\right)^{-1}(0)\left(H_{(A, \phi)}^{2}(\nu)=0\right)$.
2. If $b_{1}(Y)=0$, then there is a Baire subset of 2-forms $\mathfrak{F}^{2} \subset Z^{2}(Y, i \mathbb{R})$ such that, for all $\nu \in \mathfrak{F}^{2}, \mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}$ is tranversal to the 0 -section at $(A, 0) \in\left(\mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}\right)^{-1}(0)\left(H_{(A, 0)}^{2}(\nu)=\right.$ $0)$.

Demonstração. By considering the map

$$
\begin{gather*}
\mathcal{F}: Z^{2}(Y, i \mathbb{R}) \times \Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right), \tag{2.25}\\
\mathcal{F}(\nu, A, \phi)=\mathcal{F}^{\nu}(A, \phi)=\left(-* F_{A}+\sigma_{3}(\phi)+* \nu, D_{A} \phi\right), \tag{2.26}
\end{gather*}
$$

the first step is to prove the surjectivity of the linear operator $L=d \mathcal{F}_{(\nu, A, \phi)}$;

$$
\begin{aligned}
& L: Z^{2}(Y, i \mathbb{R}) \oplus \operatorname{Ker}\left(G_{(A, \phi)}^{*}\right) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right), \\
& \\
& L(\zeta, \Theta, V)=L_{(A, \phi)}(\Theta, V)+(* \zeta, 0)
\end{aligned}
$$

By the decomposition $\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)=\operatorname{Imag}(L) \oplus \operatorname{Ker}\left(L^{*}\right)$, the surjectivity of L is verified by proving that $\operatorname{Ker}\left(L^{*}\right)=\{0\}$. In order to compute L^{*}, let

$$
\begin{aligned}
<L(\alpha, \theta, V),(\zeta, W)> & =<* \alpha, \zeta>\oplus\left\{<* d \theta-\frac{1}{2} \sigma_{3}(\phi, V), \zeta>+<D_{A} V+\frac{1}{2} \theta \cdot \phi, W>\right\}= \\
& =<\alpha, * \zeta>\oplus\left\{<\theta, * d \zeta+\frac{1}{2} \sigma_{3}(\phi, W)>+<V, D_{A} W-\frac{1}{2} \zeta \cdot \phi>\right\}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
L^{*}(\zeta, W)=\left(* d \zeta+\frac{1}{2} \sigma_{3}(\phi, W), D_{A} W-\frac{1}{2} \zeta \cdot \phi, * \zeta\right) . \tag{2.27}
\end{equation*}
$$

Therefore, if $(\zeta, W) \in \operatorname{Ker}\left(L^{*}\right)$, then
(i) $\zeta=0$,
(ii) $\sigma_{3}(\phi, W)=0$
(iii) $D_{A} W-\frac{1}{2} \zeta \cdot \phi=0$
(iv) $d^{*} \zeta+\operatorname{Im}(<\phi, W>)=0$.

A solution (ζ, W) of these equations is C^{∞}. Let's consider the following cases:

1. (A, ϕ) is irreducible $(\phi \neq 0)$;

The equation (ii) implies that $W=\operatorname{ir} \phi$, where $r \in \operatorname{Map}(X, \mathbb{R})$. So, the equation (iii) implies that $d r=0$. Therefore, from equation (iv) it follows that

$$
\operatorname{Im}\left(-i r|\phi|^{2}\right)=0 \quad \Leftrightarrow \quad \phi=0
$$

autor: Celso M Doria

Hence, $\phi=0$ and $\zeta=0$ yields the surjectivity of L. By Sard's theorem, there is a Baire set $\mathcal{F} \in \in Z^{2}(Y, i \mathbb{R})$ such that for all $\nu \in \mathcal{F} \in \mathcal{F}^{\nu}$ is transversal to the 0 -section.
2. $(A, 0)$ is a ν-reducible solution, so $F_{A}=\nu$. If $\mu \in Z^{1}(Y, i \mathbb{R})$, then $(A+\mu, 0)$ is a solution of $F_{A}=\nu$. At $(A+\mu, 0)$, it follows from ?? that $\operatorname{Ker}\left(L^{*}\right)=H^{1}(Y, \mathbb{R}) \oplus$ $\operatorname{Ker}\left(D_{A+\mu}\right)$, so the transversality can be achieved only by assuming $b_{1}(Y)=0$. Consider the map $s: \Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \mathcal{V}, s(\mu, w)=D_{A+\mu}(w)$, where \mathcal{V} is the vector bundle $\mathcal{V} \rightarrow \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$, which fiber over $\phi \neq 0$ is the vector space $\mathcal{V}_{\phi}=\operatorname{Ker}(\operatorname{Re}<i \phi, .>)=\left(\operatorname{Span}_{\mathbb{R}}(i \phi)\right)^{\perp}$. The definition of \mathcal{V} yields from the fact that, for all $w \in \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right), D_{A+\mu} w \in \mathcal{V}_{V}$, since

$$
<D_{A+\mu} w, i w>=-\overline{<D_{A+\mu} w, i w>} \Rightarrow \operatorname{Re}\left(<D_{A+\mu} w, i w>\right)=0
$$

Because $\operatorname{ind}(D)=0$ and \mathcal{V} is a codimension 1 subspace of $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$, it follows that $\operatorname{ind}_{\mathbb{R}}\left(d s_{(\mu, w)}\right)=1$, for all $(\mu, w) \in \Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$. The derivative $d s_{(\nu, \phi)}: \Omega^{1}(Y, i \mathbb{R}) \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Gamma(\mathcal{V})$ is,

$$
\begin{equation*}
d s_{(\nu, w)}(\lambda, u)=\lambda . w+D_{A+\mu} u \tag{2.30}
\end{equation*}
$$

Suppose that $\exists \psi \in \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ such that $\psi \perp \operatorname{Imag}\left(d s_{\mu, w}\right) \subset\{i w\}^{\perp}$. So,
(a) for all $\lambda \in \Omega^{1}(Y, i \mathbb{R}),\langle\psi, \lambda . w\rangle=0 \Rightarrow \sigma_{3}(\psi, w)=0$ and $\psi=i r w$
(b) for all $u \in \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right),<\psi, D_{A+\mu} u>=0 \Rightarrow D_{A+\mu} \psi=0$, hence $d r=0 \Rightarrow \mathrm{r}$ is constant.

Once $\psi \perp i w$ in L^{2}, it follows that $r=0$. Consequently, the map $d s_{(\mu, w)}$: $\Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ is surjective and so, the map s is transversal. Agian, by Sard's theorem there exists a Baire subset of 1-forms $\mathfrak{F}_{\perp} \subset Z^{1}(Y, i \mathbb{R})$ such that, for all $\mu \in \mathfrak{F} 1, s_{\mu}=D_{A+\mu}: \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \mathcal{V}$ is transversal to the 0 section. Moreover, $\operatorname{dim}_{\mathbb{R}}\left(s_{\mu}^{-1}(0)\right)=1$. Neverthless, $D_{A+\mu}$ is a \mathbb{C}-linear operator, so $\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Ker}\left(D_{A+\mu}\right)\right)$ must be an even number. Hence, for all $\mu \in \mathfrak{F}_{\perp} s_{\mu}^{-1}(0)=$ $\operatorname{Ker}\left(D_{A+\mu}\right)=\{0\}$. As a by-product, the transversality is settled in case $b_{1}(Y)=0$.

Corollary 2.1. There is a Baire set of forms $\mathfrak{F}^{2} \subset \Omega^{2}(Y, i \mathbb{R})$ such that, for all $\nu \in \mathfrak{F}^{2}$, the space $\mathcal{M}_{\mathfrak{s}(\alpha)}^{*}(\nu)$ is a compact, 0 -dimensional manifold.

Remark 7. .

1. The transversality attained in the last theorem does not take in account the quotient by the $\mathcal{G}_{\mathfrak{s}(\alpha) \text {-action. If the analysis is carried on to the quotient, then it is }}$ not defined at reducible solutions.
2. For later applications, it is very important to understand the existence of reducible solutions of the ν-perturbed $\mathcal{S W}$-equation whenever $b_{1}(Y) \leq 1$. A necessary condition to the existence of a solution $(A, 0)$ of $F_{A}=\nu$ is that $c_{1}\left(\mathcal{L}_{\alpha}\right)=\frac{\nu}{2 \pi i}$, otherwise there is no such solution and the ν-perturbed $\mathcal{S W}$-equation is free of reducible connections. Let's consider the following cases;
(i) $b_{1}(Y)=1$: let A_{0} be a solution of $F_{A}=\nu$ and $\theta_{0} \in H^{1}(Y, \mathbb{R})$ such that $H^{1}(Y, \mathbb{R}) / H^{1}(Y, \mathbb{Z})=<\theta_{0}>$. Thus, the space of ν-reducible solutions is diffeomorphic to S^{1} and parametrized by $\mathcal{M}_{\mathfrak{s}(\alpha)}^{r e d}(\nu)=\left\{A_{0}+t \theta_{0} \mid t \in[0,1]\right\}$.
(ii) $b_{1}(Y)=0$: in this case, the equation $F_{A}=\nu$ implies that there exists $a \in \Omega^{1}(Y, i \mathbb{R})$ such that $d a=\nu$. By considering A_{0} a flat connection (the bundle \mathcal{L}_{α} is trivial), thus $\left(A_{0}+a, 0\right)$ is the unique reducible solution of the ν-perturbed $\mathcal{S} \mathcal{W}$-invariant, therefore, $\mathcal{M}_{\mathfrak{s}(\alpha)}^{\text {red }}(\nu)=\left\{A_{0}+a\right\}$.

2.3.5 Spectral Flow of the Dirac Operator

For later purposes, it is important to understand the spectrum behavior of a family of Dirac operators. A C^{∞} curve $\mu:[0,1] \rightarrow \Omega^{1}(Y, i \mathbb{R})$ induces a curve $D_{t}:[0,1] \rightarrow$ $\operatorname{Fred}^{0}\left(\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right) \in \Omega^{1}(Y, i \mathbb{R}), D_{t}(w)=D_{A+\mu(t)}$, where $\operatorname{Fred}^{0}\left(\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right)$ is the space of Fredholm operators with index 0 .

In this way, the spectrum varies smoothly with t, besides it can be assumed that the eigenvalues are distincts. The spectrum is the subset

$$
\bigcup_{t \in[0,1]}\{t\} \times \operatorname{Spec}\left(D_{t}\right) \subset[0,1] \times \mathbb{R} .
$$

The interesting aspect of $\operatorname{Spec}\left(D_{t}\right)$ is the change of signs of the eignevalues along the path. If they don't change, nothing different turns up, however if one eigenvalue λ changes its sign, then at some $t_{0} \lambda\left(t_{0}\right)=0$.

Proposition 2.10. Let $\lambda_{t} \in \operatorname{Spec}\left(D_{t}\right)$ and v_{t} an unitary λ_{t}-eigenvector. So,

$$
\frac{d \lambda_{t}}{d t}=<\frac{d D_{t}}{d t} v_{t}, v_{t}>
$$

Demonstração. Once $D_{t} v_{t}=\lambda_{t} v_{t}$, it follows that $D_{t}^{\prime} v_{t}+D_{t} v_{t}^{\prime}=\lambda_{t}^{\prime} v+\lambda_{t} v_{t}^{\prime}$. Since $\left\langle v_{t}, v_{t}^{\prime}\right\rangle=0$, by taking the L^{2}-inner product with v_{t},

$$
<D_{t}^{\prime} v_{t}, v_{t}>+<D_{t} v_{t}^{\prime}, v_{t}>=\lambda_{t}^{\prime}
$$

Besides, the self-adjointness of D_{t} implies that

$$
<D_{t} v_{t}^{\prime}, v_{t}>=<v_{t}^{\prime}, D_{t} v_{t}>=\bar{\lambda}_{t}<v_{t}^{\prime}, v_{t}>=0 .
$$

Therefore, $\lambda_{t}^{\prime}=<D_{t}^{\prime} v_{t}, v_{t}>$.
Definition 2.11. The spectral flow of a path $D_{t}:[0,1] \rightarrow \operatorname{Fred}^{0}\left(\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right)$ is

$$
S F\left(D_{t}\right)=\sigma_{1}-\sigma_{0}, \text { where } \sigma_{i} \text { is the signature of } D_{i} .
$$

All this topic concerning the Spectral flow is relevant to study the case $b_{1}(Y) \leq 1$. Let $A_{t}=A+\mu+t \mu_{0}, t \in[0,1]$ be a 1-parameter family of reducible solutions of $F_{A_{t}}=\nu$, $\nu=d \mu$. The corresponding 1-parameter family of Dirac operators $D_{t}=D_{A+\mu+t \mu_{0}} \in$ Fred $^{0}\left(\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)\right)$ may go through the 0 -line in $[0,1] \times \mathbb{R}$.

Proposition 2.11. Consider that for $t_{0} \in[0,1], 0 \in \operatorname{Spec}\left(D_{A+\mu+t_{0} \mu_{0}}\right)$. Let $\lambda_{t} \in$ $\operatorname{Spec}\left(D_{t}\right)$ be the eigenvalue such that $\lambda_{t_{0}}=0$. So, $\lambda_{t_{0}}^{\prime}>0$ meaning that the curve $\left(t, \lambda_{t}\right) \subset[0,1] \times \mathbb{R}$ across transversaly the axis $[0,1] \times\{0\}$.

Demonstração. Assume that $\mu \in \mathfrak{F} 1$, as in the theorem ??. So, the map $s_{\mu}:[0,1] \times$ $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \mathcal{V}$, given by $s_{\mu}(t, w)=D_{A+\mu+t \mu_{0}}(w)$, is transversal to the 0 -section yielding the surjectivity of $\left(d s_{\mu}\right)_{\left(t_{0}, w\right)}: \mathbb{R} \times \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \mathcal{V}$, where

$$
\left(d s_{\mu}\right)_{\left(t_{0}, w\right)}(1, u)=\left.\frac{d}{d t}\left(D_{A+\mu+t \mu_{0}}(w)\right)\right|_{t=t_{0}}+D_{A+\mu+t_{0} \mu_{0}} u .
$$

Now, let's consider $u_{0} \in \mathcal{V}$ an unitary harmonic spinor of $D_{A+\mu+t_{0} \mu_{0}}$. Due to the surjectivity of $\left(d s_{\mu}\right)_{\left(t_{0}, w\right)}$, there exists $v_{0} \in \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ such that

$$
\left.\frac{d}{d s}\left(D_{A+\mu+s \mu_{0}}(w)\right)\right|_{s=0}+D_{A+\mu+t_{0} \mu_{0}} v_{0}=u_{0} .
$$

Therefore, by taking the inner product with u_{0} and using the self-adjointness od $D_{A+\mu+t_{0} \mu_{0}}$, it follows that

$$
\left.\frac{d}{d t}\left(\lambda_{t}\right)\right|_{t=t_{0}}=<\left.\frac{d}{d t}\left(D_{A+\mu+t \mu_{0}}\right)\right|_{t=t_{0}}, v_{0} \gg=0 .
$$

This is the required condition to $\left(t, \lambda_{t}\right)$ be transversal to the axis $[0,1] \times\{0\}$.

2.3.6 $\mathcal{M}_{\mathfrak{s}(\alpha)}$ is compact for all $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{c}(X)$

Lemma 2.4. Let (A, ϕ) be an irreducible solution of 2.3. Thus,

$$
\begin{equation*}
\|\phi\|_{\infty} \leq \max _{y \in Y}\left\{0,-k_{g}(y)\right\} \tag{2.31}
\end{equation*}
$$

autor: Celso M Doria

2.3.7 $\mathcal{M}_{\mathfrak{s}(\alpha)}$ is orientable for all $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{c}(X)$

Let $\nu \in \mathfrak{F}$ as in theorem ??. Therefore, the monopole space $\mathcal{M}_{\mathfrak{s}(\alpha)}(\nu)$ is a 0 dimensional compact manifold, thus it is a finite set. Let's describe a general procedure to orient, at once, all $\mathcal{M}_{\mathfrak{s}(\alpha)}(\nu)=\left(\mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}\right)^{-1}(0)$. For the sake of simplicity, let's consider $\mathcal{F}=\mathcal{F}_{\mathfrak{s}(\alpha)}^{\nu}$.

As seen before, the map \mathcal{F} is a Fredholm map. Under the hypothesis of $\phi \neq 0$ and $\nu \in \mathfrak{F}^{2}, \mathcal{M}_{\mathfrak{s}(\alpha)}(\nu)$ is a manifold and the tangent space at (A, ϕ) is $T_{(A, \phi)} \mathcal{M}_{\mathfrak{s}(\alpha)}(\nu)=$ $\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)=H_{(A, \phi)}^{1}$. Thus, $\mathcal{M}_{\mathfrak{s}(\alpha)}(\nu)$ is orientable if the vector space $\Lambda^{\max }\left(\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)\right)$ is a trivial bundle ($\Lambda^{\max } V$ stands for the highest exterior power of V). The index of $\mathcal{T}_{(A, \phi)}$ is

$$
\begin{equation*}
\operatorname{ind}\left(\mathcal{T}_{(A, \phi)}\right)=\operatorname{dim}\left(\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)\right)-\operatorname{dim}\left(\operatorname{CoKer}\left(\mathcal{T}_{(A, \phi)}\right)\right) \tag{2.32}
\end{equation*}
$$

which corresponds to the dimension of the virtual bundle

$$
\left[\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)\right]-\left[\operatorname{CoKer}\left(\mathcal{T}_{(A, \phi)}\right)\right] .
$$

In order to achieve the triviality of $\Lambda^{\max }\left(\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)\right)$, we consider the determinant line bundle associated to a Fredholm operator;

Definition 2.12. The determinant line bundle of a Fredholm operator $\mathcal{T}(A, \phi)$ is the line bundle

$$
\operatorname{det}\left(\mathcal{T}_{(A, \phi)}\right)=\Lambda^{\max }\left(\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)\right) \otimes\left[\Lambda^{\max }\left(\operatorname{CoKer}\left(\mathcal{T}_{(A, \phi)}\right)\right)\right]^{*}
$$

The determinant line bundle of a family of Fredholm operators $\left\{\mathcal{T}(A, \phi) \mid(A, \phi) \in \mathcal{C}_{\alpha}\right\}$ is the line bundle

$$
\operatorname{det}(\mathcal{T})=\bigcup_{(A, \phi) \in \mathcal{C}_{\mathfrak{s}(\alpha)}} \operatorname{det}\left(\mathcal{T}_{(A, \phi)}\right)
$$

Remark 8. .

1. Consider $\mathcal{F}(V, W)$ the space of Fredholm operators $F: V \rightarrow W$. The index defined in 2.32 is invariant by a homotopy performed in $\mathcal{F}(V, W)$. Thus, $\operatorname{ind}\left(T_{1}\right)=\operatorname{ind}\left(T_{2}\right)$ whenever $T_{1}, T_{2} \in \mathcal{F}(V, W)$ are connected by a continuous path in $\mathcal{F}(V, W)$. Moreover, $\operatorname{det}\left(T_{1}\right)=\operatorname{det}\left(T_{2}\right)$.
2. Although the dimensions of the vector spaces $\operatorname{Ker}\left(\mathcal{T}_{(A, \phi)}\right)$ and $\operatorname{CoKer}\left(\mathcal{T}_{(A, \phi)}\right)$ may jump, the index doesn't and $\operatorname{det}(\mathcal{T})$ is a complex line bundle over $\mathcal{C}_{\mathfrak{s}(\alpha)}$. Once these spaces are all gauge invariant, it turns out that $\operatorname{det}(\mathcal{T})$ is a line bundle over $\mathcal{B}_{\mathfrak{s}(\alpha)}$.

By considering a connected path $\gamma:[0,1] \rightarrow \mathcal{C}_{\mathfrak{s}(\alpha)}, \gamma(t)=(1-t)(A, \phi)+t(A, 0)$, the index of the operator $\mathcal{T}_{(A, \phi)}$, as in 2.28, is equal to the index of the elliptic operator $\mathcal{T}_{(A, 0)}=\mathcal{P} \oplus \mathcal{Q}_{A}: \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \oplus \Omega^{0}(Y, i \mathbb{R}) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \oplus \Omega^{0}(Y, i \mathbb{R})$, where

$$
\begin{aligned}
\mathcal{P} & =\left(\begin{array}{ccc}
* d & 0 & 2 d \\
0 & 0 & 0 \\
2 d^{*} & 0 & 0
\end{array}\right): \Omega^{1}(Y, i \mathbb{R}) \oplus \Omega^{0}(Y, i \mathbb{R}) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus \Omega^{0}(Y, i \mathbb{R}), \\
\mathcal{Q}_{A} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & D_{A} & 0 \\
0 & 0 & 0
\end{array}\right): \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \rightarrow \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) .
\end{aligned}
$$

As observed before, $\operatorname{ind}(T)=\operatorname{ind}(\mathcal{P})+\operatorname{ind}\left(\mathcal{Q}_{A}\right)$, where \mathcal{P} and \mathcal{Q}_{A} are both self-adjoint with kernel

$$
\operatorname{Ker}(\mathcal{P})=H^{0}(Y, \mathbb{R}) \oplus H^{1}(Y, \mathbb{R}), \quad \operatorname{Ker}\left(\mathcal{Q}_{A}\right)=\operatorname{Ker}\left(D_{A}\right)
$$

Therefore, $\operatorname{Ker}\left(T_{(A, 0)}\right)=H^{0}(Y, \mathbb{R}) \oplus H^{1}(Y, \mathbb{R}) \oplus \operatorname{Kerd}\left(D_{A}\right)$. Moreover, the bundle $\operatorname{det}\left(\mathcal{I}_{\gamma}\right) \rightarrow[0,1]$ is trivial, so $\operatorname{det}\left(\mathcal{T}_{\gamma(0)}\right)$ and $\operatorname{det}\left(\mathcal{T}_{\gamma(1)}\right)$ are isomorphics.

Theorem 2.4. The line bundle $\operatorname{det}(\mathcal{T}) \rightarrow \mathcal{B}_{\mathfrak{s}(\alpha)}$ is trivial. Moreover, $\operatorname{det}(\mathcal{T})$ is orientable and an orientation is fixed by choosing a orientation of

$$
\Lambda^{\max } H^{0}(Y, \mathbb{R}) \oplus \Lambda^{\max } H^{1}(Y, \mathbb{R})
$$

Demonstração. Since $\operatorname{det}\left(\mathcal{T}_{(A, \phi)}\right)$ is isomorphic to $\operatorname{det}\left(\mathcal{T}_{(A, 0)}\right)$, it follows that the fibers of $\operatorname{det}\left(\mathcal{T}_{(A, \phi)}\right)$ are isomorphic to $V_{1}(A) \oplus V_{2}(A)$, where $V_{1}(A)=\Lambda^{\max } H^{0}(Y, \mathbb{R}) \oplus \Lambda^{\max } H^{1}(Y, \mathbb{R})$ and $V_{2}(A)=\Lambda^{\max } \operatorname{Ker}\left(D_{A}\right)$. The sub-bundle V_{1}, which fiber at A is $V_{1}(A)$, is trivial because its fibers independ on A. Also, the sub-bundle V_{2} is trivial because $\operatorname{Ker}(D) \rightarrow \mathcal{A}_{\alpha}$ is a complex vector bundle, hence orientable. Besides, the $\mathcal{G}_{\mathfrak{s}(\alpha)}$-action preserves the complex structure and all the decompositions in the setting.

Corollary 2.2. The manifold $\mathcal{M}_{\mathfrak{s}(\alpha)}$ is orientable and an orientation is induced by orienting the vector spaces $H^{0}(Y, \mathbb{R})$ and $H^{1}(Y, \mathbb{R})$.

In this way, if $\mathcal{M}_{\mathfrak{s}(\alpha)}=\left\{p_{1}, \ldots, p_{n}\right\}$, then for each $p_{i} \in \mathcal{M}_{\mathfrak{s}(\alpha)}, i=1, \ldots, n$, we can associate either $n_{i}=+1$ or $n_{i}=-1$.

2.3.8 Seiberg-Witten Invariants of Y^{3}

As seen in the sections before, under the hypothesis that $\nu \in \mathcal{F} \in$ and $b_{1}(Y)>1$, there are a finite number of classes $\mathfrak{s} \in \operatorname{Spin}^{\mathbb{C}}(X)$ (basic classes of Y) such that $\mathcal{M}_{\mathfrak{s}(\alpha)}(\nu) \neq \varnothing$ and is an orientable, compact 0 -dimensional manifold.
autor: Celso M Doria

Definition 2.13. Let (Y, g) be a riemannian structure on Y. The Seiberg-Witten invariant of (Y, g) is

$$
\begin{align*}
& \mathcal{S W}: \operatorname{Spin}^{\mathbb{C}} \rightarrow \mathbb{Z} \tag{2.33}\\
& \mathfrak{s}(\alpha) \longrightarrow \mathcal{S W}(\mathfrak{s}(\alpha))=\left\{\begin{array}{l}
\sum_{i} n_{i}, \text { if } \mathfrak{s}(\alpha) \text { is a basic class }, \\
0, \text { otherwise }
\end{array}\right. \tag{2.34}
\end{align*}
$$

where $n_{i}= \pm 1$, according with the orientation given at $p_{i} \in \mathcal{M}_{\mathfrak{s}(\alpha)}$.
Another way of looking at the $\mathcal{S W}$-invariant is observing that it is the euler class of the vector bundle $\mathcal{E}_{\mathfrak{s}(\alpha)} \rightarrow \mathcal{B}_{\mathfrak{s}(\alpha)}$.

The hard work next is to deal with the cases $b_{1} \leq 1$.

2.4 Metric Invariance of $\mathcal{S W}$-Invariant

The definition of the $\mathcal{S W}$-invariant requires a rimannian metric g on Y and also a 2 -form $\nu \in \mathfrak{F}^{2}$ to guarantee that $\mathcal{M}_{\mathfrak{s}(\alpha)}$ is a smooth, orientable manifold. Consider $\mathfrak{R} \mathfrak{M}_{Y}$ the space of riemannian metrics defined on Y. The metric dependence of is stressed in the cases considered next;

2.4.1 Case $b_{1}(Y)>1$

Let $g_{t}:[0,1] \rightarrow \mathcal{M}_{Y}$ be a smooth path connecting g_{0} to g_{1}, and $\nu_{t}:[0,1] \rightarrow \mathcal{F} \in \subset$ $\Omega^{2}(Y, i \mathbb{R})$ be a smooth path of 2 -forms connecting ν_{0} to ν_{1}. Since $b_{1}(Y)>1$, it can be assumed that the class $\left[\nu_{t}\right] \neq\left[\frac{F_{A}}{2 \pi i}\right], \forall t \in[0,1]$. Next, by fixing a class $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{\mathbb{C}}(Y)$, we may consider the map $\widehat{\mathcal{F}}:[0,1] \times \mathcal{C}_{\alpha} \times \Omega^{2}(Y i \mathbb{R}) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$.

$$
\begin{equation*}
\widehat{\mathcal{F}}(t, A, \phi, \nu)=\left(*_{t} F_{A}-\sigma_{3}(\phi)-* \nu_{t}, D_{A}^{t} \phi\right), \tag{2.1}
\end{equation*}
$$

where $*_{t}$ and D_{A}^{t} are the operators associated to g_{t}. The Chern-Simons-Dirac functional $\widehat{\Upsilon}:[0,1] \times \mathcal{C}_{\alpha} \rightarrow \mathbb{R}$ has non-degenerated critical points since $\nu_{t} \subset \mathfrak{F}_{2}$, for all $t \in[0,1]$, and the linear map $d \widehat{\mathcal{F}}: \mathbb{R} \oplus \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \oplus \Omega^{2}(Y, i \mathbb{R}) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ is surjective. Hence, $\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}=\widehat{\mathcal{F}}^{-1}(0)$ is a manifold. By the same arguments, the moduli space $\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}$ of solutions of 2.1 is a compact, oriented manifold which is either empty or 1-dimensional; in the former case it is a set of arcs. From the construction above, the map $\pi: \widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}} \rightarrow[0,1]$ given by $\pi^{-1}(t)=\mathcal{M}_{\mathfrak{s}(\alpha)}^{t}$ is a fibration. As a manner of fact, if $b_{1}(Y)>1$, then $\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}=\mathcal{M}_{\mathfrak{s}(\alpha)}^{0} \times[0,1]$.

Theorem 2.5. Let $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{\mathbb{C}}(X)$ and consider $\mathcal{S W}^{0}(\mathfrak{s}(\alpha))$ and $\mathcal{S W}^{1}(\mathfrak{s}(\alpha))$ the invariants associated to the spaces $\mathcal{M}_{\mathfrak{s}(\alpha)}^{0}$ and $\mathcal{M}_{\mathfrak{s}(\alpha)}^{1}$, respectively. If $b_{1}(Y)>1$, then

$$
\mathcal{S W}^{0}(\mathfrak{s}(\alpha))=\mathcal{S} \mathcal{W}^{1}(\mathfrak{s}(\alpha))
$$

autor: Celso M Doria

Demonstração. From the construction, the space $\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}$ is a cobordism among $\mathcal{M}_{\mathfrak{s}(\alpha)}^{0}$ and $\mathcal{M}_{\mathfrak{s}(\alpha)}^{1}$. However, for each $t \in[0,1]$, the invariant $\mathcal{S} \mathcal{W}^{t}(\mathfrak{s}(\alpha))$ can be written as

$$
\mathcal{S W}^{t}(\mathfrak{s}(\alpha))=\int_{\mathcal{M}_{\mathfrak{s}(\alpha)}^{t}} 1
$$

where μ is the Lebesgue measure defined on $\mathcal{M}_{\mathfrak{s}(\alpha)}^{t}$. So, by Stoke's theorem,

$$
\mathcal{S} \mathcal{W}^{0}(\mathfrak{s}(\alpha))-\mathcal{S} \mathcal{W}^{1}(\mathfrak{s}(\alpha))=\int_{\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}} d(1)=0
$$

2.4.2 Case $b_{1}(Y)=1$

This case is particularly more delicate since the condition $b_{1}(Y)=1$ means that $H^{1}(Y, \mathbb{R})$ is 1-dimensional, and so, along a variation $\nu_{t}:[a, b] \rightarrow \mathfrak{F}^{2}$ it may occur that ν_{0} and ν_{1} are in different connected component of $H^{2}(Y, \mathbb{R})-\left\{\frac{F_{A}}{2 \pi i}\right\}$. Therefore, the fibration $\pi: \widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}} \rightarrow[0,1]$ has a singular fiber at $t=c$ because of existing a reducible solution. Thus, the reducible solution $(A, 0)$ has to be taken in account and no longer $\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}$ is a manifold.

At $t=c$, the space of reducible solutions is the 1 -sphere $S^{1}=H^{1}(Y, \mathbb{R}) / H^{1}(Y, \mathbb{Z})$.
In order to understand the invariant, let's consider the the projection $\Omega^{2}(Y, i \mathbb{R}) \rightarrow$ $H^{2}(Y, \mathbb{R}), \nu \rightarrow[\nu]$, and the 1-codimension wall

$$
\mathcal{W}=\left\{\nu \in \Omega^{2}(Y, i \mathbb{R}) \mid[\nu]=2 \pi i c_{1}\left(\mathcal{L}_{\alpha}\right)\right\} .
$$

The wall splits $\Omega^{2}(Y, i \mathbb{R})$ into two connected components, named the chambers;

$$
\begin{aligned}
& \mathcal{W}^{+}=\left\{\nu \in \Omega^{2}(Y, i \mathbb{R}) ; 2 \pi i c_{1}\left(\mathcal{L}_{\alpha}\right)([\nu])>0\right\} \\
& \mathcal{W}^{-}=\left\{\nu \in \Omega^{2}(Y, i \mathbb{R}) ; 2 \pi i c_{1}\left(\mathcal{L}_{\alpha}\right)([\nu])<0\right\}
\end{aligned}
$$

As before, let's assume that the path $\nu_{t}:[0,1] \rightarrow \Omega^{2}(Y, i \mathbb{R})$ has not reducible solutions, but at $t=c$. The linear map $d \widehat{\mathcal{F}}: \mathbb{R} \oplus \Omega^{1}(Y, i \mathbb{R}) \oplus \Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right) \oplus \Omega^{2}(Y, i \mathbb{R}) \rightarrow \Omega^{1}(Y, i \mathbb{R}) \oplus$ $\Gamma\left(\mathcal{S}_{\mathfrak{s}(\alpha)}\right)$ is surjective, however the $\mathcal{G}_{\mathfrak{s}(\alpha)}$-action is not free. Thus, the fibration π : $\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}} \rightarrow[0,1]$ has a singular fiber at $t=c$ because the space $\pi^{-1}(t)=\mathcal{M}_{\mathfrak{s}(\alpha)}^{t}$ miss to be a manifold. By cutting off the singular set $\mathcal{S}_{c} \subset \mathcal{M}_{\mathfrak{s}(\alpha)}^{c}$, the moduli space $\overline{\mathcal{M}_{\mathfrak{s}(\alpha)}}$ defines an oriented cobordism among $\mathcal{M}_{\mathfrak{s}(\alpha)}^{0}$ and $\mathcal{M}_{\mathfrak{s}(\alpha)}^{c}-\mathcal{S}_{c}$ and another one among $\mathcal{M}_{\mathfrak{s}(\alpha)}^{1}$ and $\mathcal{M}_{\mathfrak{s}(\alpha)}^{c}-\mathcal{S}_{c}$.

For each $\mathfrak{s}(\alpha) \in \operatorname{Spin}^{\mathbb{C}}(X)$, consider the monopole moduli spaces $\mathcal{M}_{\mathfrak{s}(\alpha)}^{ \pm}$corresponding to the solutions of the perturbed $\mathcal{S W}$-equations restricted to $\nu \in \mathcal{W}^{ \pm}$, respectively.

Definition 2.14. The invariants $\mathcal{S W}_{ \pm}: \operatorname{Spin}^{\mathbb{C}}(Y) \rightarrow \mathbb{Z}$ are defined by

$$
\mathcal{S W}^{+}(\mathfrak{s}(\alpha))=\int_{\mathcal{M}_{\mathfrak{s}(\alpha)}^{+}} 1, \quad \mathcal{S} \mathcal{W}^{-}(\mathfrak{s}(\alpha))=\int_{\mathcal{M}_{\mathfrak{s}(\alpha)}^{-}} 1
$$

Theorem 2.6. Let $b_{1}(Y)=1$. The wall crossing formula is given by

$$
\mathcal{S W}^{+}(\mathfrak{s}(\alpha))-\mathcal{S} \mathcal{W}^{-}(\mathfrak{s}(\alpha))=\int_{S^{1}} d \mu
$$

Demonstração. It follows from the remark that the moduli space $\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}-\mathcal{S}_{c}$ defines an oriented cobordism among $\mathcal{M}_{\mathfrak{s}(\alpha)}^{0}$ and $\mathcal{M}_{\mathfrak{s}(\alpha)}^{1}$. So,

$$
\partial\left(\widehat{\mathcal{M}_{\mathfrak{s}(\alpha)}}\right)=\mathcal{M}_{\mathfrak{s}(\alpha)}^{0} \sqcup \mathcal{M}_{\mathfrak{s}(\alpha)}^{1} \sqcup S^{1}
$$

2.4.3 Case $b_{1}(Y)=0$

In general, the existence of a reducible solution $(A, 0)$ of the $\mathcal{S W}$-equations means that $F_{A}=0$, which corresponds to a representation $\rho_{A}: \pi_{1}(Y) \rightarrow U_{1}$, hence an element $\rho_{A}^{*} \in H^{1}\left(Y, U_{1}\right)$.

The case $b_{1}(Y)=0$ is restricted to the \mathbb{Q}-homology spheres $\left(H^{*}(Y, \mathbb{Q})=H^{*}\left(S^{3}, \mathbb{Q}\right)\right)$.

1. If Y is a \mathbb{Z}-homology sphere, then $H^{1}\left(Y, \mathbb{Z}_{2}\right)=H^{2}(Y, \mathbb{Z})=0$, so $\operatorname{Spin}^{\mathbb{C}}(Y)=\{0\}$. In this case, $H^{1}\left(Y, U_{1}\right)=H^{1}(Y, \mathbb{Z}) \otimes U_{1}=0$, so the only representation is the trivial one.
2. If $H^{1}(Y, \mathbb{Z})$ is a torsion group, then $\operatorname{Spin}^{\mathbb{C}}(Y)=H^{1}\left(Y, \mathbb{Z}_{2}\right)$ is finite. In this case, it may exist non-trivial representations $\rho_{A}^{*} \in H^{1}\left(Y, U_{1}\right)$.

In both cases, there is no way of getting rid of the reducible solution of the perturbed $\mathcal{S W}$-equations. The map $\mathcal{S W}: \operatorname{Spin}^{\mathbb{C}}(Y) \rightarrow \mathbb{Z}$ is no longer a smooth invariant, it depends on the metric on Y and also on the 2-form ν, whenever a perturbation has been considered.

For all $\nu \in \Omega^{2}(Y)$, the pertubed $\mathcal{S W}$-equation admits only one reducible solution, up to the gauge invariance. Let A_{0} be a flat connection and $\theta \in \Omega^{1}(Y, i \mathbb{R})$ the only 1-form satisfying $d \theta=\nu$ and $d^{*} \theta=0$, so $A=A_{0}+\theta$ is a solution of $F_{A}=\nu$. In this case, the space $\mathcal{M}_{\mathfrak{s}(\alpha)}(\nu)$ is always singular and there is no path turning around the singularity as in the case $b_{2}(Y)>1$. Therefore, if we fix a class $s(\alpha) \in \operatorname{Spin}^{c}(Y)$, then the moduli space $\mathcal{M}_{\mathfrak{s}(\alpha)}(g, \nu)$ depends on the metric g and on ν. Hence, for each pair (g, ν) we can associate the integer $\mathcal{S W}(\mathfrak{s}(\alpha) ;(g, \nu))$. In order to obtain a smooth invariant, let's introduce a curve $\sigma:[0,1] \rightarrow \mathfrak{M}_{Y} \times \Omega^{2}(Y, i \mathbb{R})$ connecting the pairs $\left(g_{0}, \nu_{0}\right)$ and $\left(g_{1}, \nu_{1}\right)$. Also consider the moduli space $\mathcal{M}_{\mathfrak{s}(\alpha)}(\sigma)$ and the fibration $\pi: \mathcal{M}_{\mathfrak{s}(\alpha)}(\sigma) \rightarrow[0,1]$, where
$\pi^{-1}(t)=\mathcal{M}_{\mathfrak{s}(\alpha)}\left(g_{t}, \nu_{t}\right)$. ALTHOUGH, FOR EACH $t \in[0,1], \pi^{-1}(t)$ IS A MANIFOLD WHEN RETRICTED TO THE IRREDUCIBLES, IT CAN NOT BE GUARANTEE THAT THE SPECTRAL FLOW OF THE DIRAC OPERATOR FAMILY $D(\sigma)$ DOES NOT JUMPS ALONG σ. WHENERVER IT JUMPS THE NUMBER $\mathcal{S} \mathcal{W}(g(t), \nu(t))$ changes, since

$$
\mathcal{S W}(g(1), \nu(1))-\mathcal{S W}(g(0), \nu(0))=S F(D(\sigma)) .
$$

The spectral flow can also be computed via the Atiyah-Patodi-Singer index theorem. It is known from ?? that a spin manifold $\left(Y, s_{Y}\right)$ bounds a 4 -manifold (X, s_{X}) with only one 0 -handle and finite many 2 -handles $\left(b_{1}(X)=0\right)$. The following objects can be extended over X;

1. the $\operatorname{Spin}^{\mathbb{C}}$-structure s_{Y} over Y extends to $s_{X} \in \operatorname{Spin}^{\mathbb{C}}(X)$ over X,
2. the U_{1}-bundle \mathcal{L}_{α} over Y to the U_{1}-bundle $\widehat{\mathcal{L}_{\alpha}}$ over X,
3. the unique flat connection θ on \mathcal{L}_{α} to a connection Θ on $\widehat{\mathcal{L}_{\alpha}}$,
4. $\nu \in \Omega^{2}(i, \mathbb{R})$ to $\widehat{\nu} \in \Omega^{2}(X, i \mathbb{R})$.

Thus, by the Atiyah-Patodi-Singer index theorem, the spectral flow $S F(D(\sigma))$ is computed by the formula

$$
\zeta(\sigma(1))-\zeta(\sigma(0))=S F(D(\sigma))
$$

where $\zeta(\sigma(t))$ is defined as follows;
Definition 2.15. Consider $b_{1}(Y)=0$ and fix $(g, \nu) \in \mathfrak{M}(Y) \times \Omega^{2}(Y, i \mathbb{R})$. Let θ be the unique flat connection (up to gauge) on \mathcal{L}_{α} and let $a \in \Omega^{1}(Y, i \mathbb{R})$ be the unique 1-form satisfying the equations $d^{*} a=0$ and $d a=\nu$. Define

$$
\begin{equation*}
\zeta(g, \nu)=\frac{1}{8} \hat{\eta}(\delta, g)+\frac{1}{2}\left(\operatorname{dim}_{\mathbb{C}} \operatorname{Ker}\left(D_{\theta+A}\right)+\hat{\eta}\left(D_{\theta+A}\right)+\frac{1}{32 \pi^{2}} \int_{Y}(A \wedge d A)\right. \tag{2.2}
\end{equation*}
$$

where $\delta=d+d^{*}: \Omega^{\text {even }}(X) \rightarrow \Omega^{\text {odd }}(X)$.

Referências Bibliográficas

[1] Dold, A. and Whitney, H. - Classification of oriented sphere bundles over a 4-comlex - Ann. Math (2), 69, 667-677, 1959.
[2] DONALDSON,S.K. AND KRONHEIMER,P. - Geometry of Four-Manifolds - Oxdord Univ Press, 1992.
[3] Milnor, J. and Stasheff, J. - Characteristic Classes - Annals of Math. Studies, Princeton Univ. Press, Study 76.
[4] Gompf, R. and Stipsicz, I. - 4-manifolds and Kirby Calculus - Graduate Studies in Math., vol 20. AMS, 1999.
[5] MORGAN, J. - The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds - Mathematical Notes 44, Princeton University Press.
[6] Scorpan, A. - The Wild World of 4-Manifolds - AMS, 2005.

[^0]: ${ }^{1}$ the canonical bundle is $K_{J}=\operatorname{det}_{\mathbb{C}}\left(T^{*} X, J^{*}\right), c_{1}\left(K_{J}\right)=-c_{1}(X, J)$

[^1]: ${ }^{2}$ this partial almost complex structure does offer enough data to be lifted and extended to a unique $\operatorname{spin}^{\mathbb{C}}$ structure across all X.

[^2]: ${ }^{3} \lambda_{\alpha}^{2}=\lambda_{2 \alpha}$

[^3]: ${ }^{1}$ recall the relation $\hat{*}=-*$ among the Hodge star opertaors. From now on, the ${ }^{\wedge}$ is being ignored.

